Thymic Epithelial Tumours
Histopathology Reporting Guide

CLINICAL INFORMATION (Note 1)
- Not provided
- Myasthenia gravis
- Pure red cell aplasia
- Rheumatoid arthritis
- Hypogammaglobulinemia (Good’s syndrome)
- Previous neoplasm, specify
- Preoperative therapy, specify
- Other disorders, specify

OPERATIVE PROCEDURE (Note 2)
- Partial thymectomy
- Total thymectomy
- Other, specify

SPECIMEN(S) SUBMITTED (select all that apply) (Note 3)
- Partial thymus
- Complete thymus
- Thymus plus surrounding tissue (radical thymectomy)
- Mediastinal pleura
- Pericardium
- Lung
- Phrenic nerve
- Great vessels
- Myocardium
- Diaphragm
- Separate extrathymic tumour nodules
- Lymph nodes
- Other, specify

HISTOLOGICAL TUMOUR TYPE (Note 7)
(Use the 2015 WHO classification. Where relevant, if more than one subtype, list in 10% increments)

Thymoma
- Present
- Not identified

Thymic carcinoma
- Present
- Not identified

MACROSCOPIC SITE OF PRIMARY TUMOUR (Note 5)
- Thymic
- >1 tumour
- Ectopic, specify site(s)

MAXIMUM DIMENSION OF PRIMARY TUMOUR (Note 6)

mm

SPECIMEN INTEGRITY (Note 4)
- Intact specimen
- Surface disrupted
- Fragmented specimen

Date of birth

Accession/Laboratory number

Elements in black text are CORE. Elements in grey text are NON-CORE.

Version 2.0 published September 2017
ISBN: 978-1-925687-11-8
Thymic neuroendocrine tumours

- Present
- Not identified

Typical carcinoid tumour
- %

Atypical carcinoid tumour
- %

Large cell neuroendocrine carcinoma
- %

Small cell carcinoma
- %

Final histological diagnosis

(Use 2015 WHO classification for combined tumours)

SEPARATE EXTRATHYMIC TUMOUR NODULES/METASTASES

(Nota 9)

Pleural and/or pericardial

- Present
- Not identified

Specify location(s)

Specify number/location

Pulmonary intraparenchymal

- Present
- Not identified

Specify site(s)

EXTENT OF DIRECT INVASION (Note 8)

Tumour capsule

- No invasion beyond capsule or limit of the thymus
- Invasion beyond the mediastinum

Mediastinal pleura

- Not involved
- Involved

Pericardium

- Not involved
- Involved

Lung (pulmonary parenchyma, visceral pleura, or both)

- Not involved
- Involved

Specify lobe(s) of the lung

GREAT VESSELS

Brachiocephalic (innominate) vein

- Not involved
- Involved

Superior vena cava

- Not involved
- Involved

Extrapericardial pulmonary artery or veins

- Not involved
- Involved

Aorta (ascending, arch or descending)

- Not involved
- Involved

Arch vessels

- Not involved
- Involved

Intrapericardial pulmonary artery

- Not involved
- Involved

Phrenic nerve

- Not involved
- Involved

Distant organ

- Present
- Not identified

Specify site(s)

RESPONSE TO NEOADJUVANT THERAPY (Note 10)

- Cannot be assessed
- Prior treatment not known
- No prior treatment
- No response
- Positive response

- No or minimal tumour response
- Partial tumour response
- Complete or near-complete response

COEXISTENT PATHOLOGY (Note 11)

- Thymic hyperplasia
- Cystic changes

Follicular

- In tumour

Epithelial

- In adjacent thymus

True

- Other, specify

MARGIN STATUS (Note 12)

- Cannot be assessed
- No involved
- Involved

Specify margin(s), if possible

- Macroscopic

Specify margin(s), if possible

- Microscopic

Specify margin(s), if possible
LYMPH NODE STATUS (Note 13)

- **Anterior (perithymic) nodes (N1)**
 - Number of lymph nodes examined
 - Number of positive lymph nodes
 - Number cannot be determined

- **Deep intrathoracic or cervical nodes (N2)**
 - Number of lymph nodes examined
 - Number of positive lymph nodes
 - Number cannot be determined

- **Unspecified location within N 1 or 2**
 - Number of lymph nodes examined
 - Number of positive lymph nodes
 - Number cannot be determined

- **Location(s) outside N 1 or 2 (M1b disease)**
 - Number of lymph nodes examined
 - Number of positive lymph nodes
 - Number cannot be determined

ANCILLARY STUDIES

Immunohistochemical markers (Note 14)

- Performed
- Not performed

- **Positive markers**
- **Negative markers**
- **Equivocal markers**

 Interpretation and conclusions

Molecular studies (Note 15)

- Performed
- Not performed

 Specify tests and results

TNM 8TH EDITION PATHOLOGIC STAGING FOR THYMIC EPITHELIAL TUMOURS## (Note 16)

Primary tumour (pT)

- TX Primary tumour cannot be assessed
- T0 No evidence of primary tumour
- T1 Tumour encapsulated or extending into the mediastinal fat, may involve the mediastinal pleura.
 - T1a No mediastinal pleural involvement
 - T1b Direct invasion of the mediastinal pleura
- T2 Tumour with direct involvement of the pericardium (partial or full thickness).
- T3 Tumour with direct invasion into any of the following; lung, brachiocephalic vein, superior vena cava, phrenic nerve, chest wall, or extrapericardial pulmonary artery or vein
- T4 Tumour with direct invasion into any of the following; aorta (ascending, arch or descending), arch vessels, intrapericardial pulmonary artery, myocardium, trachea, or oesophagus

Regional lymph nodes (pN)

- NX Regional lymph nodes cannot be assessed
- N0 No regional lymph node metastasis
- N1 Metastasis in anterior (perithymic) lymph nodes
- N2 Metastasis in deep intrathoracic or cervical lymph nodes
- N3 Metastasis in unspecified location within N 1 or 2
- N4 Metastasis in location(s) outside N 1 or 2

Distant metastases (pM)

- M0 No pleural, pericardial or distant metastasis
- M1 Distant metastasis
 - M1a Separate pleural or pericardial nodule(s)*
 - M1b Distant metastasis beyond the pleura or pericardium*

*listed as clinical M

Note 1 - Clinical information (Non-core)

Reason/Evidentiary Support

It is helpful to know whether the patient has myasthenia gravis or other conditions including neoplasms that can be associated with thymomas. Knowledge of any neoadjuvant treatment is also important as it may explain necrosis and scarring seen macroscopically and microscopically, and allows the pathologist to comment on histologic treatment response.

If clinical conditions other than those listed are provided, then these should be noted under ‘Other disorders’.

Note 2 - Operative procedure (Non-core)

Reason/Evidentiary Support

Documentation of the operative procedure is useful, as correlation of the type of procedure with the material received can be important for both pathological diagnosis and patient safety. Further, the type of surgical procedure is important in determining the assessment of surgical margins.¹

The surgeon should inform the pathologist of the type of operation/procedure.

A thymectomy is an operation to remove the thymus. A partial thymectomy is the removal of less than the whole thymus. A total (standard) thymectomy is the removal of the thymus gland without surrounding fatty tissue. An extended thymectomy is the removal of the thymus gland including the fatty tissue of the mediastinum and neck. A radical (maximal) thymectomy is the removal of the thymus gland and wide resection of fatty tissue of the middle and anterior mediastinum and neck from the diaphragm to the thyroid gland and between both phrenic nerves; the technique includes visualization of recurrent laryngeal and phrenic nerves and wide opening of both pleural spaces.

Note 3 – Specimen(s) submitted (Core)

Reason/Evidentiary Support

Specimen type should indicate what was submitted.¹ Specimen type varies according to the type of operation. If the specimen was obtained by a radical thymectomy, the specimen type is indicated as “Thymus plus surrounding tissue.”

Specimens obtained by combined resection with other organs or parts thereof, should be itemised, such as lung, pleura, pericardium, great vessels and myocardium. Other organs or tissues are reported as “Other” and details should be recorded.¹³

Separate extrathymic tumour nodules submitted should be recorded; these include pleural and pericardial seedings, pulmonary intraparenchymal nodules and distant organ metastases. The location, number and size of extrathymic nodules are described later in the dataset (see Note 10 - SEPARATE EXTRATHYMIC TUMOUR NODULES/METASTASES).

Submitted lymph nodes should also be recorded.⁴⁵ These may be submitted separately or within a combined mediastinal specimen, so labelling or discussion with the surgeon may be required. Further details on lymph nodes are captured later in the dataset (see Note 14 – LYMPH NODE STATUS).

Orientation of the specimen is crucial given the prognostic importance of margin status and pathologic tumour stage in resected thymic epithelial tumours (TETs). Once the tumour is removed from the tumour bed,
orientation becomes difficult. Furthermore, the fatty tissue can become easily disrupted. Therefore, orientation of the specimen ideally should be started in situ by the surgeon and areas of concern need to be clearly communicated to the pathologist. Orientating the specimen on a mediastinal board is encouraged (Figure 1).

Anterior, posterior, right and left surfaces should be clearly distinguished (e.g. inked with different colours or with a detailed block key). Furthermore, the surgeon should mark areas of concern and also representative areas adjacent to the pericardium, the innominate (brachiocephalic) vein and superior vena cava (or mark these structures if resected) and right/left mediastinal pleural surfaces (if resected).

Figure 1: Mediastinal board that could be used to orient the specimen

Mediastinal board. A diagram on a soft board is useful in maintaining proper dimensions and orientation of specimens. Printing this figure as a full page corresponds roughly to the normal mediastinal dimensions and can be placed directly on a standard soft specimen board that is generally available in surgical pathology departments.

Note 4 - Specimen integrity (Non-core)

Reason/Evidentiary Support

Although there are no studies specifically evaluating the prognosis of patients who underwent thymectomy where the capsule was disrupted intraoperatively or the lesion was resected in fragments, it is important to record these features because in these circumstances the pathologist cannot properly evaluate the presence of capsular invasion or completeness of resection. The latter are important prognostic features.

- ‘Intact specimen’ means that a TET is either completely surrounded by a fibrous capsule or is present in its entirety within the submitted specimen, without rupture of the tumour into surrounding tissues or on to the external surface of the specimen.
- ‘Surface disrupted’ means that a TET remains in one piece but shows exposure of the tumour onto the external surface of the specimen, secondary to disruption.
- A fragmented specimen is when a TET is submitted in piecemeal form that precludes satisfactory identification of margins.
Note 5 - Macroscopic site of primary tumour (Non-core)

Reason/Evidentiary Support
TETs usually arise as a single nodule or mass in the thymus in the anterior mediastinum. However, cases of multiple, synchronous TETs have been described. Although synchronous TETs generally occur in the thymus in the anterior mediastinum, these tumours can also occur at ectopic sites. Although rare, ectopic TETs have been described in the neck, posterior mediastinum, pretracheal fat, deep to phrenic nerves, posterior to brachiocephalic (innominate) vein, aortopulmonary window, aortocaval groove, anterior mediastinal fat, cardiophrenic fat and base of skull. Ectopic thymomas can also present in the lung, where they should be dealt with as primary pulmonary neoplasms. Importantly, ectopic TETs should be distinguished from pleural or pericardial implants and metastases because the latter will up-stage the tumour. Many reported synchronous TETs differ in tumour subtype and stage. In addition, a case of synchronous thymoma and thymic carcinoid tumour has been reported in a patient with multiple neuroendocrine neoplasia type I.9 Therefore, when synchronous TETs are identified, each tumour should be recorded, microscopically reviewed and staged.

Back

Note 6 - Maximum dimension of primary tumour (Non-core)

Reason/Evidentiary Support
A retrospective analysis of 5845 cases showed that size was not useful in predicting survival in relation to staging of TETs, so this is viewed as a non-core rather than as a core parameter. Identification of the primary tumour may be uncertain in cases with multiple foci and therefore the maximum dimension of the largest tumour should be recorded.

The maximum tumour size should still be recorded as the number of blocks sampled in a resected tumour is recommended to be 1 per centimetre of the maximum diameter. Inadequate sampling may lead to incorrect tumour classification.10

Back

Note 7 - Histological tumour type (Core)

Reason/Evidentiary Support
Tumours should be classified according to the World Health Organisation (WHO) 2015 classification system for thymic tumours (see below).11-13

In cases of TETs showing more than one morphological subtype the following should be applied:

1) TETs showing more than one histological thymoma subtype: The diagnosis in such tumours should list all the histological WHO types, starting with the predominant component and then minor components. All should be quantified in 10% increments. This rule does not apply to AB thymoma which is a distinct entity (this should be documented as type AB 100%).12,14

2) TETs consisting of a thymic carcinoma component together with one or more thymoma component: Irrespective of the size/percentage of the thymic carcinoma component the diagnosis in such tumours should begin with the label “thymic carcinoma” (specifying the histological type and percentage) followed by the thymoma component(s) (quantified in 10% increments).11,12
3) TETs consisting of more than one thymic carcinoma component (with or without a thymoma component, and excluding thymic small cell carcinoma and thymic large cell neuroendocrine carcinoma, see below): the diagnosis in such tumours should begin with the predominant carcinoma; minor carcinoma components should be quantified next in 10% increments, eventually followed by the thymoma components, if present.11,12

4) Heterogeneous thymic tumours with a small cell or large cell neuroendocrine carcinoma component: These tumours are labelled ‘combined small cell carcinoma’ or ‘combined large cell neuroendocrine carcinoma’; the various components should be given and quantified in 10% increments.
WHO classification of tumours of the thymusa,b

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>ICD0 codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelial tumours</td>
<td></td>
</tr>
<tr>
<td>Thymoma</td>
<td></td>
</tr>
<tr>
<td>Type A thymoma, including atypical variant</td>
<td>8581/3*</td>
</tr>
<tr>
<td>Type AB thymoma</td>
<td>8582/3*</td>
</tr>
<tr>
<td>Type B1 thymoma</td>
<td>8583/3*</td>
</tr>
<tr>
<td>Type B2 thymoma</td>
<td>8584/3*</td>
</tr>
<tr>
<td>Type B3 thymoma</td>
<td>8585/3*</td>
</tr>
<tr>
<td>Micronodular thymoma with lymphoid stroma</td>
<td>8580/1*</td>
</tr>
<tr>
<td>Metaplastic thymoma</td>
<td>8580/3</td>
</tr>
<tr>
<td>Other rare thymomas</td>
<td></td>
</tr>
<tr>
<td>Microscopic thymoma</td>
<td>8580/0</td>
</tr>
<tr>
<td>Sclerosing thymoma</td>
<td>8580/3</td>
</tr>
<tr>
<td>Lipofibroadenoma</td>
<td>9010/0*</td>
</tr>
<tr>
<td>Thymic carcinoma</td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>8070/3</td>
</tr>
<tr>
<td>Basaloid carcinoma</td>
<td>8123/3</td>
</tr>
<tr>
<td>Mucoepidermoid carcinoma</td>
<td>8430/3</td>
</tr>
<tr>
<td>Lymphoepithelioma-like carcinoma</td>
<td>8082/3</td>
</tr>
<tr>
<td>Clear cell carcinoma</td>
<td>8310/3</td>
</tr>
<tr>
<td>Sarcomatoid carcinoma</td>
<td>8033/3</td>
</tr>
<tr>
<td>Adenocarcinomas</td>
<td></td>
</tr>
<tr>
<td>Papillary adenocarcinoma</td>
<td>8260/3</td>
</tr>
<tr>
<td>Thymic carcinoma with adenoid cystic carcinoma-like features</td>
<td>8200/3</td>
</tr>
<tr>
<td>Mucinous adenocarcinoma</td>
<td>8480/3</td>
</tr>
<tr>
<td>Adenocarcinoma, NOS</td>
<td>8140/3</td>
</tr>
<tr>
<td>NUT carcinoma</td>
<td></td>
</tr>
<tr>
<td>Undifferentiated carcinoma</td>
<td>8023/3*</td>
</tr>
<tr>
<td>Other rare thymic carcinomas</td>
<td></td>
</tr>
<tr>
<td>Adenosquamous carcinoma</td>
<td>8560/3</td>
</tr>
<tr>
<td>Hepatoid carcinoma</td>
<td>8576/3</td>
</tr>
<tr>
<td>Thymic carcinoma, NOS</td>
<td>8586/3</td>
</tr>
<tr>
<td>Thymic neuroendocrine tumours</td>
<td></td>
</tr>
<tr>
<td>Carcinoid tumours</td>
<td></td>
</tr>
<tr>
<td>Typical carcinoid</td>
<td>8240/3</td>
</tr>
<tr>
<td>Atypical carcinoid</td>
<td>8249/3</td>
</tr>
<tr>
<td>Large cell neuroendocrine carcinoma</td>
<td></td>
</tr>
<tr>
<td>Combined large cell neuroendocrine carcinoma</td>
<td>8013/3</td>
</tr>
<tr>
<td>Small cell carcinoma</td>
<td></td>
</tr>
<tr>
<td>Combined small cell carcinoma</td>
<td>8045/3</td>
</tr>
</tbody>
</table>

a The morphology codes are from the International Classification of Diseases for Oncology (ICD-O). Behaviour is coded /0 for benign tumours; /1 for unspecified, borderline, or uncertain behaviour; /2 for carcinoma in situ and grade III intraepithelial neoplasia; and /3 for malignant tumours. b The classification is modified from the previous WHO classification, taking into account changes in our understanding of these lesions. * These new codes were approved by the IARC/WHO Committee for ICD-O. © World Health Organisation/International Agency for Research on Cancer (IARC). Reproduced with permission.
Note 8 - Extent of direct invasion (Core)

Reason/Evidentiary Support

The Masaoka-Koga staging system has been the most frequently used for staging, with refinement of definitions for anatomic staging parameters proposed in 2011, but this staging system has now been superseded by a TNM-based classification based on data from the ITMIG retrospective database of over 8000 patients analysed by an International Association for the Study of Lung Cancer (IASLC), thymic domain, committee. The T category is dependent on extent of direct local invasion. Use of an elastic stain is strongly recommended in assessing involvement of mediastinal structures in relation to elastic layers within mediastinal and visceral pleura, fibrous layer of the pericardium and the adventitia and media of the great vessels.

In relation to the new TNM-based staging system, the presence of capsular invasion was not prognostically significant in data from the ITMIG retrospective database study and tumours are therefore categorised as pT1a, independent of whether the capsule is breached, if the tumour has not directly infiltrated the mediastinal pleura. Similar data were found in separate meta-analyses. Invasion through the mediastinal pleura was also not found to be of prognostic significance in the cases from the ITMIG database, although evidence from Japanese patients demonstrated that invasion of the mediastinal pleura was associated with the cumulative incidence of recurrence (CIR) so this parameter remains part of the dataset, to be collected for further review and is categorised as pT1b, although it is recognised that this anatomic margin may not be easily identifiable on histology. Discussion with the surgeon may facilitate its identification in specimens.

In order to maintain consistency in data collection, the following definitions, agreed by expert consensus, were proposed by an ITMIG-based group:

- Pericardial invasion - microscopic involvement of the pericardium (either partial in the fibrous layer or penetrating through the serosal layer);
- Visceral pleura/lung - microscopically confirmed direct penetration through the outer elastin layer of the visceral pleura with or without invasion into the lung parenchyma.

In relation to the great vessels, opinions differed between involvement being defined as tumour cells being present within the adventitia, media or lumen. The consensus opinion, in the context of great vessels, was that tumour cells present within the media is the preferred histological compartment through which to define involvement, as it is easily seen compared to the adventitia on an elastic stain, and its involvement is likely relevant to surgical management in terms of need for partial resection and repair. In a similar fashion, involvement of the phrenic nerve is defined as tumour cells being present within the perineurium. ‘Other’ should be used if tumours infiltrate structures such as myocardium, trachea, oesophagus or chest wall. Involvement of muscle layers is viewed as the most reproducible parameter through which to collect data on positive involvement.

Note 9 - Separate extrathymic tumour nodules/metastases (Core)

Reason/Evidentiary Support

Separate extrathymic tumour nodules must be recorded as they form part of the TNM staging system. These are divided into two groups: first, those nodules that are limited to the pericardium and/or pleura (sometimes referred to as pericardial and pleural seeding), which constitute pM1a in TNM staging; second, nodules that are either within the lung parenchyma or distant organs, which constitute pM1b. The number of nodules in the pleura/pericardium should be recorded as there is some evidence that greater numbers portend an adverse prognosis.
These synchronous metastatic foci will usually have the same morphology as the primary thymic neoplasm and need to be distinguished from the far rarer synchronous primary thymic epithelial tumours (see Note 5 - MACROSCOPIC SITE OF PRIMARY TUMOUR). 7,8

Note 10 - Response to neoadjuvant therapy (Non-core)

Reason/Evidentiary Support

There is no recommended or agreed system for tumour regression grading (TRG) in TETs. There are sparse reports documenting the effects of neoadjuvant chemotherapy on TETs but there are no systematic studies on this subject. In other organ systems including carcinomas of the breast, stomach, oesophagus and colorectum, there is evidence that the response to neoadjuvant therapy provides prognostic information. Schemes for TRG for several of these organ systems have been published. Steroid therapy may also affect morphology by eliminating lymphocytes although this is not viewed as part of neoadjuvant therapy.

In TETs, RECIST (Response Evaluation Criteria In Solid Tumours) parameters have been recorded as indicators of TRG. Histological features which have been assessed as TRG factors include decrease in number of viable cells, fibrosis, necrosis and cystic change. Biological cell cycle markers (e.g. p53) were used in one study combined with viability according lung cancer parameters (25% increments). However, few studies have systematically recorded TRG elements in a methodical fashion and there are no studies which have correlated TRG with disease outcome. A scoring system for the degree of fibrosis, adapted from lung cancer TRG, has been applied to TETs and it has been suggested that macroscopic evaluation with microscopic confirmation of the extent of necrosis should be recorded and that the viable tumour cell proportion should be recorded in 10% increments. It should be noted that similar changes to those documented in neoadjuvant-treated TETs may be observed in non-treated thymomas (necrosis, cystic change) as degenerative features.

It is recommended that the response to neoadjuvant treatment in TET be recorded with the following provisos:

1. TRG is performed on resection specimens
2. Resected specimens should be adequately sampled (at least 1 block per centimetre of maximum tumour diameter)
3. The amount of viable tissue should be assessed as a percentage of the tumour
4. TRG should be scored using a 3-tier system – refer to Table 1.

Table 1: Proposed 3-tiered TRG system

<table>
<thead>
<tr>
<th>Score</th>
<th>Criterion</th>
<th>TRG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mainly viable tumour with no or minimal regression-associated fibro-inflammatory and cystic change* limited to a few foci</td>
<td>No or minimal tumour response</td>
</tr>
<tr>
<td>2</td>
<td>Multifocal or diffuse regression associated fibro-inflammatory changes and cystic change*, with viable tumour ranging from diffuse sheets, streaks or nodules, to extensive regression with multifocal but easily identifiable residual tumour.</td>
<td>Partial tumour response</td>
</tr>
<tr>
<td>3</td>
<td>Mainly regression, with few irregularly scattered individual tumour cells or cell groups (all measuring less than 2 mm), or no residual tumour identified.</td>
<td>Complete or near-complete response</td>
</tr>
</tbody>
</table>

* Regression associated fibro-inflammatory changes: fibrosis associated with macrophages, including foam cells, mixed inflammatory cells and calcification.
Note 11 - Coexistent pathology (Non-core)

Reason/Evidentiary Support

Thymectomy specimens from myasthenia gravis patients commonly demonstrate pathologic findings in the non-neoplastic thymus and the most common feature is thymic follicular hyperplasia. Thymic hyperplasia can be classified into three types: follicular, epithelial and true hyperplasia. Follicular hyperplasia is defined by the presence of B-cell follicles irrespective of the size or weight of the thymus. The standardised macroscopic and histopathological work-up of thymectomy specimens including the grading of thymic follicular hyperplasia has been reported by MGTX\(^a,29,30\). Epithelial hyperplasia (nodular epithelial hyperplasia, also called ‘microscopic thymoma’) is a thymic epithelial cell proliferation forming discrete microscopic islands and it is not infrequently observed in thymic tissue from myasthenia gravis patients.\(^{31,32}\) It should be differentiated from ‘microthymoma’ which represents microscopic-sized true thymoma.\(^33\) True thymic hyperplasia is an increase in volume of the thymus which maintains normal histology.\(^34\) Because of wide variations of sizes and weights of the thymus in the normal population, true thymic hyperplasia is difficult to define except for extreme cases. The presence of thymic hyperplasia adjacent to a thymoma, irrespective of the type, has no known clinical significance.

Cystic changes can involve both thymic epithelial tumours and adjacent thymus.\(^{35-39}\) The description of cystic changes, although not of prognostic significance, may be important for clinicopathological correlation.

† Back

Note 12 - Margin status (Core)

Reason/Evidentiary Support

Complete resection has been repeatedly shown to be a prognostic parameter in thymomas and thymic carcinomas.\(^{40-42}\) Therefore, the evaluation and recording of the margin status is important. To be able to assess the margins, orientation of the specimen is crucial. As discussed earlier (see Note 5 MACROSCOPIC SITE OF PRIMARY TUMOUR), once the tumour is removed from the tumour bed, orientation becomes difficult. Furthermore, the fatty tissue can become easily disrupted. Therefore, orientation of the specimen should ideally be started in situ by the surgeon and areas of concern need to be clearly communicated to the pathologist. Anterior, posterior, right and left surfaces should be clearly distinguished (e.g. inked with different colours or with a detailed block key). Furthermore, the surgeon should mark areas of concern and also representative areas adjacent to the pericardium, the large vessels (or mark these structures if resected) and right/left mediastinal pleural surfaces (if resected). If the resection specimen includes neighbouring organs such as lung, or large vessels, margins need to be evaluated on those organs as well.

R0 resection is defined as complete resection without macroscopic or microscopic involvement of the margin by the tumour. R1 (incomplete) resection indicates microscopic tumour at the resection margin. R2 (incomplete) resection is defined as macroscopic tumour present at the resection margin. If the specimen is disrupted at the time of gross evaluation and cannot be reconstructed, then the assessment of margins might not be possible.

† Back

\(^a\) Thymectomy and Myasthenia gravis multicentre, international clinical trial (MGTX)
Note 13 - Lymph node status (Core)

Reason/Evidentiary Support

Involvement of lymph nodes by TETs is an adverse prognostic factor. Lymph node status should be recorded according to the recommended anatomic map in relation to the ITMIG & IASLC TNM system, namely anterior (perithymic) nodes (N1) and deep intrathoracic or cervical nodes (N2), whilst any positive lymph node was viewed as stage IVb within the Masaoka-Koga system. As the location of lymph nodes found during the gross inspection of a thymectomy specimen may be problematic, either the specimen needs to be properly oriented by the surgeon, or labelled specifically within separate pots. Lymph nodes outside N1 and N2 are regarded as distant metastasis (pM1b).

Back

Note 14 - Immunohistochemical markers (Non-core)

Reason/Evidentiary Support

Immunohistochemical analysis of thymic resection specimens may be performed for several reasons:

1. To exclude or confirm the presence of a tumour of thymic epithelial origin
2. To aid in subtyping of thymomas
3. To establish the origin of a thymic carcinoma as either a primary thymic carcinoma or a metastasis

The differential diagnostic spectrum of thymoma is related to either its epithelial component or to the lymphoid component. The lymphoid component of “B-type” thymoma and of thymic follicular hyperplasia may raise the suspicion of non-Hodgkin lymphoma, especially T-lymphoblastic leukaemia/lymphoma. Immunohistochemistry may be applied to type the lymphoid population [normally composed of immature, CD3/terminal deoxynucleotidyl transferase (TdT/CD1a/CD99+) lymphocytes], or to confirm the presence of an epithelial component, which may be highlighted by pan-cytokeratin and/or p63 stains. The epithelial component in thymic epithelial tumours with a sparse lymphoid component may raise the possibility of either a germ cell tumour or metastatic carcinoma. Germ cell tumours may be diagnosed by appropriate immunohistochemical stains including SALL4, OCT4, CD117, CD30, D2-40, human chorionic gonadotropin (hCG), placental alkaline phosphatase (PLAP), and α-fetoprotein (AFP).

Subtyping of thymomas is primarily based on histology; immunohistochemical stains (cytokeratin and/or p63) may be helpful in the evaluation of the density of the epithelial cells in B-type thymoma thus aiding the diagnosis of B1/2/3 thymoma. Similarly, cytokeratin stains may be used to confirm the epithelial nature of the spindle cells in type A, type AB and in metaplastic thymoma. Epithelial expression of CD20 is reported to be more frequent among type A and AB thymomas.

Distinguishing thymoma (in particular type B3 thymoma) and thymic carcinoma may occasionally be problematic; there are no immunohistochemical markers that can reliably segregate these entities. However, CD5, CD117 and the recently described markers GLUT1 and MUC1 show a higher incidence of staining in thymic carcinoma (in particular, thymic squamous cell carcinoma) compared to thymoma. Ki-67 labelling index in epithelial tumour cells of ≥13.5% has been suggestive of thymic carcinoma.

The diagnosis of thymic carcinoma essentially involves the exclusion of metastasis; immunohistochemical analysis may support a diagnosis of thymic carcinoma but cannot establish the diagnosis with certainty. Expression of CD5, particularly in combination with CD117 positivity, lends some support to a diagnosis of thymic carcinoma. Several new markers (FoxN1 and CD205) may further support a diagnosis of thymic carcinoma. Other markers may be applied to rule out thymic carcinoma by confirming a non-thymic origin, such as TTF-1. However, given the great diversity in histological subtypes of thymic carcinoma, the specificity
of markers routinely used to diagnose carcinoma of a particular origin may be considerably lower in this situation.12

Note 15 – Molecular studies (Non-core)

Reason/Evidentiary Support

Molecular studies have not been applied routinely for the diagnosis of thymic epithelial tumours. A diagnosis of NUT carcinoma needs immunohistochemical and/or molecular genetic confirmation.51,52 The sensitivities of NUT immunohistochemical staining have been reported as 60\% and 87\%.51,52 There have been a few reports of primary mediastinal synovial sarcoma confirmed by FISH.

Note 16 – TNM 8th edition Pathologic Staging for Thymic Epithelial Tumours (Core)

Reason/Evidentiary Support

At least 15 different stage classification systems have been proposed, beginning as far back as 1978.53 Until 2016, the most widely used was the Masaoka system,15 modified and refined in 1994,16 with refinement of definitions for anatomic staging parameters proposed in 2011.17 This has now been replaced by a TNM-based classification based on data from the ITMIG retrospective database of over 8000 patients.5 In the new TNM 8th editions, both UICC54 and AJCC55, T stage is based on the extent of direct invasion of mediastinal structures (see above section),3 nodal disease is based on involvement of lymph nodes in anterior (perithymic) (N1) and deep/cervical (N2) compartments, and M stage based on the presence of separate pleural and pericardial nodules (M1a) and pulmonary intraparenchymal nodule or distant organ metastasis (M1b).4 The Masaoka-Koga system could still be used if part of ongoing studies but the TNM system should be used henceforth as the method of staging.56
References

