CLINICAL INFORMATION (select all that apply) (Note 1)
- Information not provided
- Pre-existing skeletal disease, specify
- Familial syndrome, specify
- Multifocal disease, specify
- Other (e.g., prior radiation therapy, implants, fracture), specify

OPERATIVE PROCEDURE (select all that apply) (Note 4)
- Not specified
- En bloc resection
- Amputation
- Curettage
- Other (e.g., metastasectomy, lymph node dissection), specify

ANATOMICAL SITE (Note 5)
- Bone, not specified
- Bone, specify
- Other, specify

TUMOUR SITE (select all that apply) (Note 6)
- Epiphysis or apophysis
- Metaphysis
- Diaphysis
- Other, specify
- Unknown
 AND
 - Cortex
 - Medullary cavity
 - Surface
 - Unknown
 AND
 - Tumour confined to bone
 - Tumour involves joint
 - Tumour extension into soft tissue
 - Unknown

TUMOUR LATERALITY
- Left
- Right
- Not specified/Not applicable
TUMOUR DIMENSIONS (Note 7)

- Maximum tumour dimension [] mm
- Additional dimensions [] mm x [] mm

OR
- [] No identifiable tumour (e.g., after preoperative therapy)
- [] Cannot be assessed, specify

Presence of skip metastases
- [] No
- [] Yes, specify dimensions

HISTOLOGICAL TUMOUR TYPE (Note 8)
(Value list based on the World Health Organization Classification of Soft Tissue and Bone Tumours (2020))
- [] Atypical cartilaginous tumour
- [] Central chondrosarcoma
- [] Peripheral chondrosarcoma
- [] Periosteal chondrosarcoma
- [] Clear cell chondrosarcoma
- [] Mesenchymal chondrosarcoma
- [] Dedifferentiated chondrosarcoma
- [] Low-grade central osteosarcoma
- [] Osteosarcoma (conventional, teleangiectatic, or small cell)
- [] Parosteal osteosarcoma
- [] Periosteal osteosarcoma
- [] High-grade surface osteosarcoma
- [] Secondary osteosarcoma
- [] Fibrosarcoma
- [] Epithelioid haemangioendothelioma
- [] Angiosarcoma
- [] Giant cell tumour of bone
- [] Giant cell tumour of bone, malignant
- [] Conventional chordoma (including chordroid)
- [] Poorly differentiated chordoma
- [] Dedifferentiated chordoma
- [] Adamantinoma of long bones
- [] Leiomyosarcoma of bone
- [] Undifferentiated pleomorphic sarcoma
- [] Ewing sarcoma
- [] Round cell sarcoma with EWSR1-non ETS fusions
- [] Sarcoma with BCOR genetic alterations
- [] Other, specify
- [] Indeterminate, specify

HISTOLOGICAL TUMOUR GRADE (Note 9)
- [] Not applicable
- [] Grade 1
- [] Grade 2
- [] Grade 3
- [] Cannot be assessed, specify

MICROSCOPIC EXTENT OF INVASION (select all that apply) (Note 10) *(Applicable to medullary tumours only)*
- [] Cannot be assessed
- [] Permeative (infiltrative) growth
- [] Cortical destruction
- [] Soft tissue extension

LYMPHOVASCULAR INVASION (Note 11)
- [] Not identified
- [] Present
- [] Indeterminate

RESPONSE TO NEOADJUVANT THERAPY (Note 12)
- [] No prior treatment
- [] No response
- [] Response
 - % viable tumour [] %
 - % response (e.g., necrosis, fibrosis, calcification) [] %
- [] Cannot be assessed, explain reasons

MARGIN STATUS (Note 13)
- [] Cannot be assessed
- [] Not involved (R0)
 - Distance of tumour from closest margin [] mm
 - Specify location of closest margin (e.g., distal), if possible
 - Specify type of tissue of closest margin
- [] Microscopically involved (R1)
 - Specify margin(s), if possible
- [] Macroscopically involved (R2)
 - Specify margin(s), if possible

Comments
[]

LYMPH NODE STATUS *(Note 14)*
- Cannot be assessed
- No nodes submitted or found

Number of lymph nodes examined
- Not involved
- Involved
 Number of involved lymph nodes
- Number cannot be determined

COEXISTENT PATHOLOGY *(Note 15)*
- None identified
- Present, specify

ANCILLARY STUDIES *(Note 16)*
- Not performed
- Performed
 - Immunohistochemistry findings, *record results*
 - Molecular testing findings, *record methodology and result(s)*
 - Other, specify test(s) and result(s)

PATHOLOGICAL STAGING (UICC TNM 8th edition) *(Note 17)*

TNM Descriptors (only if applicable)* (select all that apply)
- m - multiple primary tumours
- r - recurrent
- y - post-therapy

Primary tumour (pT)
- Inadequate specimen for assessment
- TX Primary tumour cannot be assessed
- T0 No evidence of primary tumour

APPENDICULAR SKELETON, TRUNK, SKULL AND FACIAL BONES

SPINE
- T1 Tumour confined to a single vertebral segment or two adjacent vertebral segments
- T2 Tumour confined to three adjacent vertebral segments
- T3 Tumour confined to four adjacent vertebral segments
- T4a Tumour invades into the spinal canal
- T4b Tumour invades the adjacent vessels or tumour thrombosis within the adjacent vessels

PELVIS
- T1a A tumour 8 cm or less in size and confined to a single pelvic segment with no extraosseous extension
- T1b A tumour greater than 8 cm in size and confined to a single pelvic segment with no extraosseous extension
- T2a A tumour 8 cm or less in size and confined to two adjacent pelvic segments without extraosseous extension
- T2b A tumour greater than 8 cm in size and confined to two adjacent pelvic segments without extraosseous extension
- T3a A tumour 8 cm or less in size and confined to two pelvic segments with extraosseous extension
- T3b A tumour greater than 8 cm in size and confined to two pelvic segments with extraosseous extension
- T4a Tumour involving three adjacent pelvic segments or crossing the sacroiliac joint to the sacral neuroforamen
- T4b Tumour encasing the external iliac vessels or gross tumour thrombus in major pelvic vessels

Regional lymph nodes (pN)
- No nodes submitted or found
- NX Regional lymph nodes cannot be assessed
- N0 No regional lymph node metastasis
- N1 Regional lymph node metastasis

a Found at histological examination.

c The five vertebral segments are the: Right pedicle, Right body, Left body, Left pedicle and Posterior element.

d The four pelvic segments are the: Sacrum lateral to the sacral foramen, Iliac wing, Acetabulum/periacetabulum and Pelvic rami, symphysis and ischium.
Scope

The dataset has been developed for the pathology reporting of resection specimens of primary tumour in bone. Ewing sarcoma and related round cell sarcomas with primary bone presentation are also covered in this dataset. A separate dataset is available for reporting of biopsy specimens of primary tumour in bone.

Hematologic malignancies and metastatic specimens are excluded from this dataset.

Note 1 – Clinical information (Non-core)

For accurate diagnosis of bone tumours, a multidisciplinary approach is imperative. It is the responsibility of the clinician or radiologist requesting the pathological examination of a specimen to provide information to the pathologist that will have an impact on the diagnostic process or affect its interpretation. The use of a standard pathology requisition/request form including a checklist of important clinical information is strongly encouraged to help ensure that important clinical data is provided by the clinicians with the specimen. It is also the responsibility of the pathologist to verify that all radiological and clinical information that is essential to make a diagnosis is available to guarantee that the final diagnosis is made within the appropriate clinical/imaging context.

Note 2 – Neoadjuvant therapy (Core and Non-core)

Information about treatment or other clinical information aids interpretation of the microscopic findings and accurate pathological diagnosis. Pre-operative radiation and/or other therapy may have a profound effect on the morphology of both the cancer and benign tissue. Knowledge of such prior therapy may help to interpret changes such as necrosis, vasculature changes, cellular atypia and inflammatory cells. For this reason, information about any previous therapy is important for the accurate assessment of bone specimens. Different scoring systems are being used, and are discussed in Note 12 RESPONSE TO NEOADJUVANT THERAPY. Moreover, the use of denosumab in giant cell tumour of bone induces bone formation, and disappearance of the giant cells, therefore, this information is crucial. Also, previous embolization may cause areas of necrosis. In addition, many novel therapies, such as tyrosine kinase inhibitors and immunotherapy, may cause histological effects when used in a neoadjuvant setting, and need to be fully described.

Note 3 – Imaging findings (Core)

The correlation between the histology and imaging findings is critical in the diagnosis of bone tumours. For instance, aggressive features identified radiographically (permeative/moth-eaten growth, cortical destruction, soft tissue extension, periosteal reaction) should be mentioned here, as well as multifocality, evidence of matrix deposition, presence of fluid-fluid levels etc. It is important for the pathologist to be aware of the radiological differential diagnosis, and to be aware of previous radiological findings, if applicable. The presence of a pathologic fracture may influence the histological
evaluation and should be documented. Certain bone tumours (cartilaginous tumour, vascular tumours) tend to occur multifocally, and skip metastases can be present. This is important knowledge for the pathologist when working up the resection specimen. Finally, in the case of neoadjuvant therapy, the radiological response evaluation should be recorded.

Note 4 – Operative procedure (Core)

This element includes the type and intent of the operative procedure, independent of the final margin assessment by the pathologist. On the rare occasion that lymph nodes are included with the specimen, these should be listed under ‘other’. Metastasectomy specimens can also be listed under ‘other’.

Note 5 – Anatomical site (Core)

Recording anatomical site of the tumour is important as certain bone tumours have a preference for specific bones and do not occur in others, and there is a strong association between site and outcome. The latter is especially true for cartilaginous tumours, and as a consequence in the World Health Organization (WHO) Classification of Tumours, Soft Tissue and Bone Tumours, 5th edition, 2020, a diagnosis of atypical cartilaginous tumours/chondrosarcoma grade 1, depends on whether the tumour is located in the appendicular or the axial skeleton, respectively. In the long and short tubular bones these tumours behave in a locally aggressive manner and do not metastasize, can be treated locally, and should not be classified as having full malignant potential. Therefore, the term ‘atypical cartilaginous tumour’ is used for these cartilaginous tumours in the appendicular skeleton (long and short tubular bones). In contrast, the term chondrosarcoma grade 1 is used for histologically similar tumours of the axial skeleton, including the pelvis, scapula and skull base (flat bones) – reflecting the poorer clinical outcome and the necessity of more aggressive treatment of these tumours at these sites. Please note that here we consider the scapula and skull base to be part of the axial skeleton. It should be noted that the definition of axial versus appendicular is not universally accepted; while the WHO categorises the scapula, and skull base as part of the axial skeleton, the Union for International Cancer Control (UICC)/American Joint Committee on Cancer (AJCC) TNM 8th editions include these with appendicular skeleton.

Note 6 – Tumour site (Core)

It is important to know the exact tumour site within the bone; for intramedullary tumours and those arising primary at the surface of bone, the histological differential diagnosis will differ. Also, some tumours almost exclusively occur in the epiphysis of the bone (e.g., clear cell chondrosarcoma, giant cell tumour of bone), while others prefer the metaphysis (osteosarcoma) or diaphysis (Ewing sarcoma, adamantinoma). Moreover, primary soft tissue sarcomas may be in close proximity and even invade the bone, while primary bone sarcomas may have an extensive soft tissue component; in these cases, radiological information is required to decide whether the tumour originates primarily from bone or soft tissue.
Note 7 – Tumour dimensions (Core and Non-core)

The size of the largest tumour mass should be documented from imaging, preferably in three dimensions as this is important to evaluate the tumour volume. In cases where the radiological tumour dimensions cannot be assessed, such as for multifocal or discontinuous tumour, it is important to note this and record the relative volume of tumour if possible.

Note 8 – Histological tumour type (Core)

Histologic diagnosis is based on the latest WHO Classification (Table 1). The diagnosis is usually made on biopsy before resection. A comment should be included if the final diagnosis based on the resection specimen is discordant with the previous diagnosis on the biopsy.

Table 1: World Health Organization classification of intermediate and malignant bone tumours and undifferentiated small round cell sarcomas.

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>ICD-O codesa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chondrogenic tumours</td>
<td></td>
</tr>
<tr>
<td>Intermediate (locally aggressive)</td>
<td></td>
</tr>
<tr>
<td>Atypical cartilaginous tumour</td>
<td>9222/1</td>
</tr>
<tr>
<td>Malignant</td>
<td></td>
</tr>
<tr>
<td>Chondrosarcoma, grade 1</td>
<td>9222/3*</td>
</tr>
<tr>
<td>Chondrosarcoma, grade 2</td>
<td>9220/3</td>
</tr>
<tr>
<td>Chondrosarcoma, grade 3</td>
<td>9220/3</td>
</tr>
<tr>
<td>Periosteal chondrosarcoma</td>
<td>9221/3</td>
</tr>
<tr>
<td>Clear cell chondrosarcoma</td>
<td>9242/3</td>
</tr>
<tr>
<td>Mesenchymal chondrosarcoma</td>
<td>9240/3</td>
</tr>
<tr>
<td>Dedifferentiated chondrosarcoma</td>
<td>9243/3</td>
</tr>
<tr>
<td>Osteogenic tumours</td>
<td></td>
</tr>
<tr>
<td>Malignant</td>
<td></td>
</tr>
<tr>
<td>Low-grade central osteosarcoma</td>
<td>9187/3</td>
</tr>
<tr>
<td>Osteosarcoma NOS</td>
<td>9180/3</td>
</tr>
<tr>
<td>Conventional osteosarcoma</td>
<td></td>
</tr>
<tr>
<td>Telangiectatic osteosarcoma</td>
<td></td>
</tr>
<tr>
<td>Small cell osteosarcoma</td>
<td></td>
</tr>
<tr>
<td>Parosteal osteosarcoma</td>
<td>9192/3</td>
</tr>
<tr>
<td>Periosteal osteosarcoma</td>
<td>9193/3</td>
</tr>
<tr>
<td>High-grade surface osteosarcoma</td>
<td>9194/3</td>
</tr>
<tr>
<td>Secondary osteosarcoma</td>
<td>9184/3</td>
</tr>
<tr>
<td>Fibrogenic tumours</td>
<td></td>
</tr>
<tr>
<td>Malignant</td>
<td></td>
</tr>
<tr>
<td>Fibrosarcoma NOS</td>
<td>8810/3</td>
</tr>
<tr>
<td>Vascular tumours of bone</td>
<td></td>
</tr>
<tr>
<td>Malignant</td>
<td></td>
</tr>
</tbody>
</table>

1. Table 1 adapted from the World Health Organization classification system.
<table>
<thead>
<tr>
<th>Descriptor</th>
<th>ICD-O codes<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelioid haemangioendothelioma NOS</td>
<td>9133/3</td>
</tr>
<tr>
<td>Angiosarcoma</td>
<td>9120/3</td>
</tr>
<tr>
<td>Osteoclastic giant cell–rich tumours</td>
<td></td>
</tr>
<tr>
<td>Intermediate (locally aggressive, rarely metastasizing)</td>
<td></td>
</tr>
<tr>
<td>Giant cell tumour of bone NOS</td>
<td>9250/1</td>
</tr>
<tr>
<td>Malignant</td>
<td></td>
</tr>
<tr>
<td>Giant cell tumour of bone, malignant</td>
<td>9250/3</td>
</tr>
<tr>
<td>Notochordal tumours</td>
<td></td>
</tr>
<tr>
<td>Malignant</td>
<td></td>
</tr>
<tr>
<td>Chordoma NOS</td>
<td>9370/3</td>
</tr>
<tr>
<td>Chondroid chordoma</td>
<td></td>
</tr>
<tr>
<td>Poorly differentiated chordoma</td>
<td>9370/3</td>
</tr>
<tr>
<td>Dedifferentiated chordoma</td>
<td>9372/3</td>
</tr>
<tr>
<td>Other mesenchymal tumours of bone</td>
<td></td>
</tr>
<tr>
<td>Malignant</td>
<td></td>
</tr>
<tr>
<td>Adamantinoma of long bones</td>
<td>9261/3</td>
</tr>
<tr>
<td>Dedifferentiated adamantinoma</td>
<td></td>
</tr>
<tr>
<td>Leiomyosarcoma NOS</td>
<td>8890/3</td>
</tr>
<tr>
<td>Pleomorphic sarcoma, undifferentiated</td>
<td>8802/3</td>
</tr>
<tr>
<td>Haematopoietic neoplasms of bone</td>
<td></td>
</tr>
<tr>
<td>Plasmacytoma of bone</td>
<td>9731/3</td>
</tr>
<tr>
<td>Malignant lymphoma, non-Hodgkin, NOS</td>
<td>9591/3</td>
</tr>
<tr>
<td>Hodgkin disease NOS</td>
<td>9650/3</td>
</tr>
<tr>
<td>Diffuse large B-cell lymphoma NOS</td>
<td>9680/3</td>
</tr>
<tr>
<td>Follicular lymphoma NOS</td>
<td>9690/3</td>
</tr>
<tr>
<td>Marginal zone B-cell lymphoma NOS</td>
<td>9699/3</td>
</tr>
<tr>
<td>T-cell lymphoma NOS</td>
<td>9702/3</td>
</tr>
<tr>
<td>Anaplastic large cell lymphoma NOS</td>
<td>9714/3</td>
</tr>
<tr>
<td>Malignant lymphoma, lymphoblastic, NOS</td>
<td>9727/3</td>
</tr>
<tr>
<td>Burkitt lymphoma NOS</td>
<td>9687/3</td>
</tr>
<tr>
<td>Langerhans cell histiocytosis NOS</td>
<td>9751/1</td>
</tr>
<tr>
<td>Langerhans cell histiocytosis, disseminated</td>
<td>9751/3</td>
</tr>
<tr>
<td>Erdheim–Chester disease</td>
<td>9749/3</td>
</tr>
<tr>
<td>Rosai–Dorfman disease</td>
<td></td>
</tr>
<tr>
<td>Undifferentiated small round cell</td>
<td></td>
</tr>
<tr>
<td>Ewing sarcoma</td>
<td>9364/3</td>
</tr>
<tr>
<td>Round cell sarcoma with EWSR1–non-ETS fusions</td>
<td>9366/3*</td>
</tr>
<tr>
<td>CIC-rearranged sarcoma</td>
<td>9367/3*</td>
</tr>
<tr>
<td>Sarcoma with BCOR genetic alterations</td>
<td>9368/3*</td>
</tr>
</tbody>
</table>

^a These morphology codes are from the International Classification of Diseases for Oncology, third edition, second revision (ICD-O-3.2). Behaviour is coded /0 for benign tumours; /1 for unspecified, borderline, or uncertain behaviour; /2 for carcinoma in situ and grade III intraepithelial neoplasia; /3 for malignant tumours, primary site; and /6 for malignant tumours, metastatic site.
* Codes marked with an asterisk were approved by the International Agency for Research on Cancer (IARC)/WHO Committee for ICD-O at its meeting in January 2020.

↑ Back

Note 9 – Histological tumour grade (Core)

In bone sarcomas, the histotype mostly determines grade, as indicated in the list below (based on WHO 2020), with only a very few exceptions.

Bone sarcomas in which grade is determined by histotype:

Grade 1 (low grade):
- Low-grade intramedullary osteosarcoma
- Parosteal osteosarcoma
- Clear cell chondrosarcoma

Grade 2 (intermediate grade):
- Periosteal osteosarcoma

Grade 3 (high grade):
- Osteosarcoma (conventional, telangiectatic, small cell, secondary, high grade surface)
- Undifferentiated high grade pleomorphic sarcoma
- Ewing sarcoma and BCOR rearranged sarcoma
- Dedifferentiated chondrosarcoma
- Mesenchymal chondrosarcoma
- Dedifferentiated chordoma
- Poorly differentiated chordoma
- Angiosarcoma

Variable:
- Conventional chondrosarcoma (Grade 1-3 according to Evans)
- Leiomyosarcoma of bone (Grade 1-3 no established grading system)
- Low and high grade malignancy may occur in giant cell tumour of bone

Not applicable:
- Adamantinoma and conventional chordoma

↑ Back

Note 10 – Microscopic extent of invasion (Core)

If the radiological findings include permeative growth, cortical invasion and destruction or soft tissue extension, the pathologist should record if these features are confirmed histologically. This is facilitated when gross examination is aligned with the radiological imaging.

↑ Back
Note 11 – Lymphovascular invasion (Non-core)

Lymphovascular invasion (LVI) is extremely rare in bone tumours however, it is important to report if identified in the specimen.

Back

Note 12 – Response to neoadjuvant therapy (Core)

The response to pre-operative chemotherapy is of prognostic value, especially in Ewing and osteosarcoma, and needs to be evaluated in a standardised way. At least one complete central slab of tumour through its largest dimension should be submitted for histological evaluation. Additional sections can be taken from the remaining two hemispheres of the specimen, especially near the periosteum/soft tissue extension. The amount of remaining viable tumour cell should be estimated on each histological slide to obtain an average score reflecting the overall percentage of response. Response does not always consist of necrosis, very often extensive fibrosis and calcification can be seen, which is also considered response. In osteosarcoma, a cut-off of 10% viable tumour cells/90% or more response (tumour necrosis, fibrosis and calcification) is used to indicate a good response. For Ewing sarcoma the cut-off is less well defined. Grimer and colleagues (2016) recently showed 100% response was most optimal to define a good tumour response in Ewing sarcoma. In earlier reports (the Bologna system as well as the van der Woude scoring system) a good response was defined as the percentage of necrosis of the microscopic tumour mass between 90% and 100%. In the literature different cut-offs are used to evaluate chemotherapy-induced necrosis.

Back

Note 13 – Margin status (Core and Non-core)

There is no generally accepted way of reporting margins for bone tumours. If margins are involved, a distinction is often made between microscopic involvement (R1) and resections in which it is evident macroscopically that the tumour is incompletely resected (R2). In the case of negative margins (R0), the minimum that should be documented is the distance of tumour to the closest margin. The type of tissue comprising the resection margin should also be recorded (e.g., pseudocapsule, loose fibrous/fibroadipose tissue, bone, skeletal muscle, dense regular connective tissue (fascia/aponeurosis/periosteum/vascular sheath/perineurium) since it might be that bone/fascia are more robust marginal tissues than other tissue types. In addition, the distance to the closest osteotomy margin should also be recorded even if it is not the closest margin. Some guidelines recommend that all margins less than 2 centimetres (cm) should be documented in terms of depth and the tissue comprising each that is less than 2 cm.

Back

Note 14 – Lymph node status (Non-core)

Lymph nodes are very rarely submitted or found with bone specimens and it is not necessary to undertake an exhaustive search for nodes in the specimen. Though regional lymph node metastasis is very rare in adult bone sarcomas, its presence has prognostic importance and it is important to report.
Note 15 – Coexistent pathology (Non-core)

If present, the pathologist should report other abnormalities that are relevant for the diagnosis and any other significant pathologic finding, even if not directly relevant or unrelated. For instance, the presence of precursor lesions for chondrosarcoma, such as multiple enchondromas, osteochondroma, or synovial chondromatosis should be documented. Paget disease and osteonecrosis or bone infarction may be seen in addition to a secondary sarcoma. The presence of a pathologic fracture may influence the histological evaluation and should be documented. Other unrelated findings may include vasculitis, infection, coexistent chronic lymphocytic leukaemia (CLL) or incidental/unexpected metastatic carcinoma in the same specimen.

Note 16 – Ancillary studies (Core)

All immunohistochemical stainings and molecular tests that contributed to the diagnosis should be documented. For instance, for Ewing sarcoma and other round cell sarcomas, lymphoma, adamantinoma and chordoma, these ancillary studies (immunohistochemical and/or molecular) are critical.

Note 17 – Pathological staging (Non-core)

It is important that pathologist give the required ingredients for staging (according to UICC² or AJCC³ 8th edition staging systems) in their reports. Ultimately, the final stage will be determined by the treating physician or in the multidisciplinary team, which will take both the pathological and imaging findings into account.

References

