<table>
<thead>
<tr>
<th>TUMOUR SITE (Note 1)</th>
<th>CLINICAL INTENT OF PROCEDURE (Note 2)</th>
<th>SPECIMEN LATERALITY (Note 3)</th>
<th>SPECIMEN(S) SUBMITTED (Note 4)</th>
<th>MACROSCOPIC PRIMARY LESION DIMENSIONS</th>
<th>MACROSCOPIC SATELLITE LESIONS (Note 5)</th>
<th>OTHER LESION(S) (Note 6)</th>
<th>SURGICAL MARGIN/TISSUE EDGES (Note 7)</th>
<th>BRESLOW THICKNESS (Note 8)</th>
<th>ULCERATION (Note 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not specified</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Not specified</td>
<td>length mm x width mm x depth mm</td>
<td>Not identified</td>
<td>Present</td>
<td>Cannot be assessed</td>
<td>Specify closest location(s), if possible</td>
<td>Indeterminate</td>
</tr>
<tr>
<td>Specify</td>
<td>Excisional/complete diagnostic biopsy</td>
<td>Left</td>
<td>Punch technique</td>
<td></td>
<td>Present</td>
<td>Indeterminate</td>
<td>Not involved by melanoma in situ</td>
<td>Specify location(s), if possible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incisional/incomplete (partial)</td>
<td>Midline</td>
<td>Shave technique (superficial)</td>
<td></td>
<td>Present</td>
<td>Indeterminate</td>
<td>Not involved by invasive melanoma</td>
<td>Specify location(s), if possible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wide excision</td>
<td>Right</td>
<td>Saucerization/scoop/deep shave technique</td>
<td></td>
<td>Present</td>
<td>Indeterminate</td>
<td>Involved by melanoma in situ</td>
<td>Specify location(s), if possible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curette</td>
<td></td>
<td>Fusiform/elliptical/disc (full-thickness)</td>
<td></td>
<td>Indeterminate</td>
<td>Involved by invasive melanoma</td>
<td>Specify location(s), if possible</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other, specify</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
MITOTIC COUNT *(Note 11)*

|/MM² | Indeterminate |

MICROSATELLITES *(Note 12)*

- Not identified
- Present

MICROSATELLITES: MARGINS *(Note 13)*

- Cannot be assessed
- Not involved by microsatellite
- Involved by microsatellite

CLARK LEVEL *(Note 14)*

- Confined to epidermis (Level 1)
- Infiltrates but does not fill papillary dermis (Level 2)
- Fills/expands papillary dermis (Level 3)
- Infiltrates into reticular dermis (Level 4)
- Infiltrates into subcutaneous fat (Level 5)

LYMPHOVASCULAR INVASION *(Note 15)*

- Not identified
- Present

TUMOUR-INFILTRATING LYMPHOCYTES *(Note 16)*

- Not identified
- Brisk
- Non brisk

TUMOUR REGRESSION *(Note 17)*

- Not identified
- Present

NEUROTROPISM *(Note 19)*

- Not identified
- Present

DESMOPLASTIC MELANOMA COMPONENT *(Note 20)*

- Not identified
- Present
 - Pure (>90% desmoplastic melanoma)
 - Mixed desmoplastic/non-desmoplastic melanoma

ASSOCIATED MELANOCYTIC LESION *(Note 21)*

- Not identified
- Present, describe

LYMPH NODES STATUS *(Note 22)*

(Required only if lymph nodes submitted)

Sentinel nodes

- Number of sentinel nodes examined
- Number of positive sentinel nodes

- Number cannot be determined

Extranodal extension

- Not identified
- Present
- Indeterminate

Maximum dimension of largest metastasis in sentinel node

mm

Location of largest sentinel node metastases

- Subcapsular
- Intraparenchymal
- Both subcapsular and intraparenchymal

Non-sentinel lymph nodes (clinically occult)

- Number of non-sentinel nodes examined
- Number of positive non-sentinel nodes

- Number cannot be determined

Extranodal extension

- Not identified
- Present
- Indeterminate

Maximum dimension of largest metastasis in a non-sentinel node

mm

Clinically apparent lymph nodes

- Number of non-sentinel nodes examined
- Number of positive non-sentinel nodes

- Number cannot be determined

Extranodal extension

- Not identified
- Present
- Indeterminate

Maximum dimension of largest metastasis in a non-sentinel node

mm

* Required only in the presence of positive nodes.
PATHOLOGICAL STAGING (UICC TNM 8th edition)**

##

Primary tumour (pT)

- TX: Primary tumour cannot be assessed
- T0: No evidence of primary tumour or regressed melanomas
- Tis: Melanoma in situ (Clark level I)
- T1: Tumour 1 mm or less in thickness
 - T1a: less than 0.8mm in thickness without ulceration
 - T1b: less than 0.8mm in thickness with ulceration or 0.8mm or more but no more than 1mm in thickness, with or without ulceration
- T2: Tumour more than 1 mm but not more than 2 mm in thickness
 - T2a: Without ulceration
 - T2b: With ulceration
- T3: Tumour more than 2 mm but not more than 4 mm in thickness
 - T3a: Without ulceration
 - T3b: With ulceration
- T4: Tumour more than 4 mm in thickness
 - T4a: Without ulceration
 - T4b: With ulceration

Regional lymph nodes (pN)

- NX: Regional nodes not assessed
- N0: No regional lymph node metastases
- N1: Metastasis in one regional lymph node or intralymphatic regional metastasis without nodal metastases
 - N1a: Only microscopic metastasis (clinically occult)
 - N1b: Macroscopic metastasis (clinically apparent)
 - N1c: Satellite or in-transit metastasis without regional nodal metastasis
- N2: Metastasis in two or three regional lymph nodes or intralymphatic regional metastasis with lymph node metastases
 - N2a: Only microscopic nodal metastasis
 - N2b: Macroscopic nodal metastasis
 - N2c: Satellite or in-transit metastasis with only one regional nodal metastasis
- N3: Metastasis in four or more regional lymph nodes, or matted metastatic regional lymph nodes, or satellite(s) or in-transit metastasis with metastasis in two or more regional lymph node(s)
 - N3a: Only microscopic nodal metastasis
 - N3b: Macroscopic nodal metastasis
 - N3c: Satellite or in-transit metastasis with two or more regional nodal metastasis

Ancillary Studies (Note 24)

BRAF testing

- Not performed
- Performed

Record results and methodology

Other testing, specify if performed

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF testing</td>
<td></td>
</tr>
<tr>
<td>Other, specify</td>
<td></td>
</tr>
</tbody>
</table>

Notes

* pTX includes shave biopsies and curettage that do not fully assess the thickness of the primary.

Satellites are tumour nests or nodules (macro or microscopic) within 2 cm of the primary tumour. In-transit metastasis involves skin or subcutaneous tissue more than 2 cm from the primary tumour but not beyond the regional lymph nodes.

Scope

This dataset has been developed for reporting of primary cutaneous invasive melanoma. The second edition of this dataset includes changes to align the dataset with the TNM Pathological staging 8th edition and the World Health Organization (WHO) Classification of Tumours. Pathology and Genetics of Skin Tumours. (2018). Other significant changes are the inclusion of Clinical Intent and Ancillary studies i.e. BRAF. Other minor changes have been made to bring the dataset into alignment with recent terminology and formatting updates.

Note 1 - Tumour site (Core)

1. Sufficient information is required to localise the lesion for subsequent therapy. A diagram or photograph can facilitate this.1,2

2. It is important that the site of the biopsy be recorded as specifically/accurately as possible to reduce the risk of any required additional re-excision occurring at the incorrect site.

3. When matched for other known prognostic factors, melanomas on the scalp, other head and neck areas, upper back, axial skeleton and acral regions are reported to have a worse prognosis than extremity-based lesions.3-7

4. The anatomic site of the tumour may also affect the pathologic interpretation of the histologic features observed, and this may, in turn, influence the proffered pathologic diagnosis. For example, naevi occurring on certain sites (including the palms, sole, fingers and toes, flexural sites, genitalia, the breast and ear, sometimes referred to as “special sites”) often display features that could be considered evidence favouring melanoma in melanocytic tumours occurring at other sites.1,2,8,9

Note 2 - Clinical intent of procedure (Core)

When interpreting a pigmented lesion, it is helpful for the pathologist to be advised by the clinician on whether the specimen was taken with the intent of its complete removal or as a partial sample (incomplete removal) of the lesion. This may not only influence the interpretation of the biopsy, but reporting of the surgical edges/margins of the specimen. While complete excision with narrow clearance margins is generally recommended when sampling clinically suspicious pigmented lesions, partial biopsy remains an acceptable practice in certain instances (see below).

An excisional (or complete) biopsy with narrow clearance margins (generally 1-3 mm) is usually the most appropriate method of biopsy of a clinically suspicious melanocytic tumour.10 This enables an accurate assessment and will allow definitive treatment to be planned appropriately if a diagnosis of melanoma is confirmed. Diagnostic excisional biopsies with intent to remove the concerning neoplasm may involve an elliptical/fusiform, ovoid (or other shaped) full-thickness excision, punch, or deep shave/saucerization technique.

Incomplete diagnostic biopsies of melanocytic tumours (also termed “incisional” or “partial”) may also include specimens taken with elliptical/fusiform, punch, and shave techniques. Incomplete/partial/incisional biopsies may contribute to pathological misdiagnosis, because of unrepresentative sampling of a heterogenous tumour.
(i.e., a partial biopsy may sample only the benign part of a lesion and miss a coexisting melanoma) or may not provide sufficient tissue for adequate assessment of the pathological criteria necessary to permit correct diagnosis. Nevertheless, it remains an accepted clinical practice to partially sample melanocytic tumours in some instances, such as large pigmented lesions in surgically challenging locations—for example, the face or digits/acral sites. If two samples are from different parts of the same tumour, this should be explicitly noted.

Pathological diagnostic criteria for melanoma include features at the peripheral and deep aspects of the tumour, which may not be included in an incomplete biopsy. Another potential pitfall of an incomplete biopsy of a naevus is that it may regrow from residual naevocytes after incomplete removal. Regenerating ("recurrent" or "persistent") naevi often display many histological features that commonly occur in melanomas (including pagetoid epidermal invasion, cytological atypia, occasional dermal mitoses and HMB45 positivity). For these reasons, such lesions have been termed ‘pseudomelanomas’ and are prone to overdiagnosis as melanomas.

Incomplete biopsies of melanomas may also provide inaccurate assessment of important pathological features, such as Breslow thickness. Accurate assessment of pathological features of a primary melanoma allows prognosis to be reliably estimated; it also guides selection of appropriate management (width of excision margins, appropriateness of sentinel node biopsy); inaccurate pathological assessment can lead to inappropriate (and potentially insufficient) therapy.

Note 3 - Specimen laterality (Core)

1. Specimen laterality information is needed for identification purposes and to localize the lesion for subsequent therapy. A diagram or photograph can facilitate this.

2. It is important that the site of the biopsy be recorded as specifically/accurately as possible to reduce the risk of any required additional re-excision occurring at the incorrect site.

Note 4 - Specimen(s) submitted (Core)

Although clinical considerations are important in determining the most appropriate biopsy technique for a melanocytic tumour, the type of biopsy performed may affect the accuracy of pathological evaluation. At times partial biopsies are performed of melanocytic lesions. Possible reasons include a very low suspicion of melanoma, the melanocytic lesion being large or located in a cosmetically sensitive area, and in some instances, no clinical suspicion of the lesion being melanocytic (e.g., melanocytic lesions that are amelanotic and exhibit no clinical pigment) (see also, Note 1 Tumour site).

Further, correlation of the type of procedure with the material received can be important for patient safety. For instance, if the clinician states that the procedure was a punch biopsy but the specimen examined is a skin ellipse, it is possible that there may be a misidentification of the specimen.
Note 5 - Macroscopic satellite lesions (Core)

The presence of clinically/macroscopically apparent (or microscopically identified) metastases between the primary tumour and the regional lymph nodes is associated with adverse prognosis in melanoma and is classified as stage III melanoma in the 8th edition of the American Joint Commission on Cancer (AJCC) melanoma staging system. Microsatellite, satellite and in-transit metastases, are thought to represent metastases that have occurred as a consequence of intralymphatic tumour spread. In the 8th edition AJCC melanoma staging system “(1) satellite metastases are defined as grossly visible cutaneous and/or subcutaneous metastases occurring within 2 cm of the primary melanoma); (2) microsatellites – microscopic cutaneous and/or subcutaneous metastases found adjacent or deep to a primary melanoma on pathological examination (see detailed discussion in Pathological Staging). The metastatic tumour cells must be discontinuous from the primary tumour (but not separated only by fibrosis or inflammation because this could signify regression of the intervening tumour); or (3) in transit metastases (defined as clinically evident dermal and/or subcutaneous metastases identified at a distance greater than 2 cm from the primary melanoma in the region between the primary and the first regional lymph nodes).” There was no substantial difference in survival outcome for these anatomically defined entities in the 8th edition AJCC international melanoma database of contemporary patients and hence they were grouped together for staging purposes.

↑ Back

Note 6 - Other lesion(s) (Non-core)

Other lesions are often naevi or other benign lesions; however, it is particularly important to identify the presence of satellite metastases because these portend a worse prognosis.

The description of the lesion includes such features as shape, colour, border, contour, evidence of surface crusting or ulceration and its proximity to the primary lesion and the resection margins.

↑ Back

Note 7 - Surgical margin/Tissue edges (Core and Non-core)

When the clinical intention of the biopsy is to completely remove a melanoma, it is important to document when the surgical margins are microscopically involved (positive) by in situ or invasive melanoma and to specify the precise area of the positive margin, if possible. If the margins are microscopically clear, for clinical management purposes, it is usually sufficient to simply state this in the pathology report, unless the microscopic margin is narrow (where there is a risk that limited routine pathological sampling may fail to detect a positive margin). What constitutes a narrow microscopic margin in the excision specimen probably varies with the type of melanoma. For most cases of superficial spreading and nodular melanoma, a 1 mm peripheral rim of histologically uninvolved tissue is likely to be sufficient. However, with lentigo maligna and other melanomas with less well circumscribed and well-defined peripheral edges, a wider rim of histologically uninvolved tissue may be advisable.

When the deep margin is microscopically positive with invasive melanoma, it is often helpful to know whether the margin involvement represents focal transection or broad involvement by invasive tumour. This may be clinically useful, as an invasive melanoma with broad transection at the peripheral and deep margins in a partial biopsy of a larger lesion may influence future treatment planning. In contrast, focal transection at the deep margin is unlikely to result in a thicker melanoma in a wide excision specimen or to ultimately affect the AJCC stage defined by T category.
The standard treatment for primary melanoma is wide local excision of the skin and subcutaneous tissues around the melanoma. Such definitive treatment is not usually performed until after a pathological diagnosis of melanoma has been established. The aim is complete surgical excision of all in situ and invasive melanoma components. Involvement of the surgical margin may result in regrowth or metastasis from residual melanoma, and may adversely affect patient outcome. 21-23 On the basis of several randomized controlled trials (RCTs) 24-28 national guidelines from several countries have recommended wide excision margins according to the thickness of the primary cutaneous melanoma. 29-31 The trials were based on surgical margins measured clinically at the time of wide excision. Clinically measured wide excision margins are a less precise measure of the extent of excision of normal tissues surrounding the tumour than the histopathological margins. However, little prospective evidence is available that demonstrates a definite relationship between histopathological measured margin and local, in transit and regional recurrence. A number of recent retrospective studies have correlated histological and clinical margins with recurrence of melanoma. 32-36 These studies suggest that a histological margin of <8 mm in T1-T3 melanomas and <16 mm in T4 melanomas may be associated with adverse outcomes (such as locoregional recurrence and recurrence-free survival), but this requires validation in prospective studies.

Providing data on distance of melanoma from the margins may be helpful not only to clinicians in guiding patient management but also for pathologists when examining any subsequent specimen (e.g., re-excision specimen or for determining whether recurrent tumour at the primary site represents local persistence of melanoma or a metastasis).

Note 8 - Breslow thickness (Core)

Breslow thickness/depth is the single most important prognostic factor for clinically localised primary melanoma. 3 Breslow thickness is measured from the top of the granular layer of the epidermis (or, if the surface is ulcerated, from the base of the ulcer) to the deepest invasive cell across the broad base of the tumour (dermal/subcutaneous) as described by Breslow. 2,37,38 Deep, vertical extensions of the tumour, perpendicular to the base should be assumed to be periadnexal and should not be included in the Breslow thickness. Similarly, satellite lesions or areas of vascular invasion should not be included. “Thickness should be measured by using an ocular micrometer calibrated to the magnification of the microscope used for the measurement. In accordance with consensus recommendations, 39 thickness measurements should be recorded to the nearest 0.1 mm, not the nearest 0.01 mm, because of impracticality and imprecision of measurement, particularly for tumours >1 mm thick. Tumours ≤1 mm thick may be measured to the nearest 0.01 mm if practical, but the measurement should be rounded up or down to be recorded as a single digit after the decimal (i.e., to the nearest 0.1 mm). The convention for rounding decimal values is to round down those ending in 1 to 4 and to round up for those ending in 5 to 9. For example, a melanoma measuring 0.75 mm in thickness would be recorded as 0.8 mm in thickness. Tumour measuring 0.95 mm and one measuring 1.04 mm both would be rounded to 1.0 mm (i.e., T1b).” 18

To promote consistency in the evaluation of the Breslow thickness the following points are worthy of note:

1. The Breslow thickness can only be evaluated accurately in sections cut perpendicular to the epidermal surface. Otherwise, a note should be included indicating that “the section is cut tangentially and an accurate Breslow thickness cannot be provided.” Nevertheless, in some tangentially cut sections, it is often still possible to report a tangentially measured tumour thickness. The latter may be clinically useful because it can be reasonably inferred that the true Breslow thickness must be less than this measurement, and, when appropriate, this should be stated clearly in the report. At other times, particularly when the epidermis is not visualized, no tumour thickness can be provided, and supplementary prognostic information must be obtained from other factors (including ulceration, mitotic rate, and Clark level). When sections have been tangentially cut, it may be fruitful to melt the
paraffin block and reembed the tissue as it may then be possible to obtain perpendicular sections for
determination of the Breslow thickness.

2. The Breslow thickness should be measured in the standard way when there is dermal regression (i.e.,
dermal regression extending to a greater thickness than the melanoma should not be included in the
measurement of Breslow thickness).

3. In the case of periadnexal extension of melanoma (i.e., in the adventitial or extra-adventitial tissue
immediately adjacent to skin appendageal structures usually apparent as an extension or “tongue” of
tumour extending beyond the depth of the main tumour mass), it is uncertain from current evidence
where the measurement of tumour thickness should be made to most accurately predict patient
prognosis. (This does not include adnexal involvement by melanoma, which is regarded as in situ
disease.) It is generally agreed that thickness measurements should not be based on periadnexal
extension (either periadnexal adventitial or extra-adventitial extension), except when it is the only
focus of invasion. In that circumstance, Breslow thickness may be measured from the centre of the
hair follicle or sweat gland, to the furthest extent of infiltration into the periadnexal dermis. The depth
of extension of such foci beneath the granular layer of the epidermis may also be measured and
reported (but it should be clearly stated how the measurements were obtained and that the
periadnexal measurement represents the estimated “true” Breslow thickness).

4. The Breslow thickness cannot be determined if a superficial biopsy transects a melanoma and includes
only its superficial portion. In such instances, the pathologist can only report the melanoma to be ‘at
least’ a certain thickness. Correlation with the re-excision specimen is necessary. As discussed in Note
7, it may be clinically useful to document whether the surgical transection by melanoma is focal or
broad as this may assist the clinician in determining the appropriateness of sentinel node biopsy in T1
melanomas and the extent of wide excision in T2 melanomas.

5. Other problems may arise from differing interpretations of the nature of dermal cells (i.e., whether
they represent melanoma or a pre-existing naevus) and of tumours with verruciform architecture.

6. The inclusion of neurotropic spread of melanoma in the measurement of Breslow thickness is
controversial. In this instance, it is recommended that the thicknesses of the tumour including and
excluding the neurotropic component be recorded in the pathology report.

7. Microsatellites, as discussed in detail below, are foci of tumour discontinuous from the primary
melanoma (probably representing local metastases) and should not be included in the measurement
of tumour thickness.

8. In some instances, particularly when a melanoma arises in association with a nevus, it may be difficult
to distinguish small “nevoid” melanoma cells from nevus cells, and this may have implications for
measuring tumour thickness. Careful assessment of architectural and especially cytologic features
should assist in distinction, but at times this remains difficult, subjective, and prone to interobserver
variability.

The presence of any of the above attributes may warrant the inclusion of an explanatory note in the report
to ensure that any uncertainty or nuance is clearly communicated.

The standard method for measurement of tumour thickness in ulcerated lesions may lead to an underestimate
of thickness, because the recommended measurement from the base of the ulcer to the base of the tumour
makes no allowance for the amount of tumour lost through ulceration.

The thickness (measured from the top of the granular layer) of any zone of regression may also be recorded in
the pathology report (but does not represent the Breslow thickness). If any measurement of regression is
included in the report, it should not be included in the measurement of the Breslow thickness.
Note 9 - Ulceration (Core)

Ulceration is an integral component of the AJCC/Union for International Cancer Control (UICC) staging system and an independent predictor of outcome in patients with clinically localised primary cutaneous melanoma. Ulceration is an integral component of the AJCC/Union for International Cancer Control (UICC) staging system and an independent predictor of outcome in patients with clinically localised primary cutaneous melanoma. Assessing the presence of ulceration may be difficult in recently biopsied lesions and in cases in which there is only a focal loss of the epidermis; in this case, it is difficult to determine whether the epidermal deficiency is due to ulceration or to sectioning artifact. Absence of fibrin or granulation tissue from putative areas of ulceration would be clues that the apparent ulceration is actually due to sectioning of only part of the epidermis.

Back

Note 10 - Extent of ulceration (Non-core)

Extent of ulceration measured microscopically as a diameter in mm (or as a percentage of the dermal invasive tumour width), provides more accurate prognostic information than the mere presence of ulceration.

Back

Note 11 - Mitotic count (Core)

Multiple studies indicate that mitotic rate in the invasive portion is an important prognostic factor for localised primary melanomas (including very large studies utilizing the methodology for mitotic count determination described below). The number of mitotic figures can vary greatly between different parts of a tumour. For consistency and reproducibility, a standardised method must be used to assess mitotic count. It is recommended that the field diameter of a microscope be formally calibrated using a stage micrometer to determine the number of high-power fields that equates to a 1 mm².

In the 8th edition of the AJCC/UICC melanoma staging system, the recommended method to enumerate mitotic figures is to find an area in the dermis with obvious mitotic activity (the “hot spot”), and begin the count in this area, then extending the area counted to immediately adjacent non-overlapping high-power fields in a 1 mm² area. If no hot spot is identified and the mitotic figures are sparse and randomly scattered, then the count should begin in a field containing a mitosis, then extended to immediately adjacent non-overlapping high-power fields until a 1 mm² area of tissue containing melanoma is assessed. When the invasive component of the tumour involves an area <1 mm², a 1 mm² area of dermal tissue that includes the tumour should be assessed and recorded as a number per mm². The number of mitotic figures should be listed as a whole number/mm². If no mitotic figures are identified, the mitotic count may be recorded “none identified” or “0/mm²”. This methodology for determining the mitotic count of a melanoma has been shown to have excellent interobserver reproducibility including amongst pathologists with widely differing experiences in the assessment of melanocytic tumours.

It is also recommended in 8th edition of the AJCC/UICC staging manual that the mitotic count should be assessed in all primary melanomas (as whole number/mm²) for prognostic purposes. The data that demonstrated the strong prognostic significance of mitotic count were obtained from the melanoma pathology reports of routinely assessed H&E stained sections. It is therefore not recommended that any additional sections be cut and examined (or immunohistochemical analysis be performed), in excess of those that would normally be used to report and diagnose the melanoma, to determine the mitotic count (i.e., no...
additional sections should be cut and examined for the purpose of determining the mitotic count; this includes the situation when no mitotic figures are identified on the initial, routinely examined sections).

Note 12 - Microsatellites (Core)

In the 8th edition of the AJCC melanoma staging system the definition of microsatellite was clarified and refined. A microscopic satellite is any nest of metastatic tumour cells discontinuous from the primary tumour (but not separated only by fibrosis or inflammation). There is no longer a minimum size threshold or distance from the primary tumour that defines a microsatellite. Fibrous scarring and/or inflammation between an apparently separate nodule and the primary tumour (rather than normal stroma) may represent regression of the intervening tumour; if these findings are present, the nodule is considered to be an extension of the primary tumour and not a microsatellite. The terms ‘microsatellites’, ‘satellites’ and ‘in-transit metastases’ probably represent biologically identical processes with identical (worse) prognostic implications. Microsatellites, satellites and in-transit metastases are included in the same prognostic group by the AJCC and are classified as stage III melanoma in the 8th edition of the AJCC melanoma staging system.

Note 13 - Microsatellites: Margins (Core)

The presence of a melanoma satellite metastasis at a peripheral excision margin is usually an indication for re-excision, because it may serve as a source of recurrence and may imply that there might be further melanoma in the skin beyond the visible margins.

Note 14 - Clark level (Non-core)

Clark-McGovern level may provide useful prognostic information if an accurate Breslow thickness cannot be determined e.g. where the specimen has been tangentially sectioned. Most evidence suggests that the Breslow thickness of a melanoma is a more accurate prognostic indicator than the Clark level. In the 2017, 8th edition of the AJCC/UICC melanoma staging system, Clark level is not used as a primary criterion for the definition of T1b tumours (which are now defined by the presence of ulceration in a tumour <0.8 mm or 0.8-1.0 mm thickness with or without ulceration) except in the instance referred to above (e.g. occasionally mal-embedded lesions where no accurate measurement of thickness is possible). It is also recommended that alphanumeric numbers be used to specify each of the Clark levels, rather than using the traditional Roman numerals to avoid confusion of Clark level with tumour stage.

Note 15 - Lymphovascular invasion (Core)

Lymphovascular invasion refers to the presence of melanoma cells within the lumina of blood vessels (termed vascular invasion) or lymphatics (termed lymphatic invasion), or both. Lymphovascular invasion is identified by the demonstration of melanoma cells within the lumina of blood vessels or lymphatics, or both. Lymphovascular invasion is recorded as present or absent. It is an uncommon finding in the excision specimens of primary cutaneous melanoma, but is generally regarded as a marker of poor prognosis. There is a possible role for immunohistochemistry to highlight the presence of vascular invasion in selected cases. At times it may be difficult to distinguish whether invasive tumour is present within a lymphatic channel or
represents a microsatellite. In this instance, the use of immunohistochemistry for a specific lymphatic marker such as D2-40 may assist in distinction. Invasion of tumour into the wall of a blood vessel but without tumour within the lumen of the blood vessel, should not be recorded as lymphovascular invasion.

Note 16 - Tumour-infiltrating lymphocytes *(Non-core)*

To be regarded as tumour-infiltrating lymphocytes (TILs), lymphocytes must infiltrate and disrupt tumour nests and/or directly oppose tumour cells. The degree of infiltration can be described by both the extent and the intensity of the TIL infiltrate.

The most commonly applied grading scheme for quantitating the presence of TILs is the system described by Clark, Mihm and Elder and is summarised below:

1. **Absent TIL infiltrate:** no lymphocytes present or, if present, they do not interact with tumour cells. For example, a cuff of lymphocytes around the periphery of the tumour with no infiltration is considered absent. Furthermore, lymphocytes within the tumour nodule but in perivenular array or in fibrous nodules in the tumour substance, without infiltration of the tumour itself, are considered absent.
2. **Non-brisk TIL infiltrate:** focal areas of lymphocytic infiltration in the tumour. They may be isolated, multifocal or segmental.
3. **Brisk TIL infiltrate:** TIL infiltration either of the entire base of the tumour or diffuse permeation of the tumour.

Other systems for grading TIL infiltrates based on the density and distribution of them have also been proposed, but these have not been independently validated.

Reports on the prognostic effect of TILs vary but most suggest the presence of ‘brisk’ or dense TILs is associated with a more favourable prognosis. A recent report suggested a strong association between TIL infiltrates and sentinel node status and survival when utilizing a novel grading system. Absent TILs predicted sentinel lymph node positivity in a number of recent studies.

Figure 1. Brisk tumour-infiltrating lymphocytes. A. Lymphocytes diffusely infiltrate the entire base of the invasive tumour. B. Lymphocytes diffusely infiltrate the entire invasive component of the melanoma. Copyright College of American Pathologists.
Note 17 - Tumour regression (Non-core)

A host immunologic response may be directed against melanoma and may result in elimination of part or all of the melanoma; this is termed regression. Regression may result in partial or complete loss of melanoma and is characterized by immature and mature dermal fibrosis, often accompanied by the presence of melanophages and effacement of the rete architecture, with absence of melanoma in the region of regression.

The prognostic significance of regression is controversial. Some studies report that it portends a worse prognosis, whereas others report that it is associated with a more favourable outcome. Difficulties in interpreting such studies include lack of a standardised definition or criteria for its diagnosis, selection bias, and poor interobserver reproducibility.

Note 18 - Tumour regression: margins (Non-core)

Regression at a peripheral excision margin may be an indication for re-excision because it implies that there may be further melanoma in the skin beyond the visible margins.

Note 19 - Neurotropism (Core)

Neurotropism is identified by the presence of melanoma cells around nerve sheaths (perineural invasion) or within nerves (intraneural invasion). It is recommended that pathologists be cautious not to overinterpret the presence of melanoma cells around nerves in the main tumour mass (which often represents “entrapment” of nerves in the expanding tumour) as neurotropism. Where possible neurotropism is identified in the main tumour mass, the presence of intraneural invasion or clear perineural invasion (PNI) (often recognised by the presence of “onion skinning”) can be useful to distinguish true neurotropism from entrapment. Some authorities also regard neural transformation (sometimes seen in desmoplastic melanoma) as a form of neurotropism.

Infiltration along nerve sheaths (or occasionally within the endoneurium) may be associated with an increased local recurrence rate (local persistence). Neurotropism is common in desmoplastic melanoma (desmoplastic neurotropic melanoma), but may occur in other forms of melanoma. One recent large study reported that the presence of neurotropism was not associated with increased risk of local recurrence compared with other non-neurotropic melanomas if adequate surgical margins were obtained. However, adjuvant radiotherapy reduced the risk of recurrence if adequate surgical margins could not be achieved. It may be helpful for the clinician if the pathologist reports whether the PNI is “extensive” or “focal” (i.e., involving only a single or multiple nerves) and/or size of involved nerves, but evidence for this is lacking.
Note 20 - Desmoplastic melanoma component (Core)

Desmoplastic melanoma (DM) is a rare subtype of melanoma characterized by malignant spindle cells separated by prominent fibrocollagenous or fibromyxoid stroma. Primary melanomas may be entirely or almost entirely desmoplastic ("pure" DM) or exhibit a desmoplastic component admixed with a non-desmoplastic component ("mixed" DM). Spindle (or epithelioid) melanoma cells not separated by desmoplastic stroma are not regarded as desmoplastic melanoma but may form the non-desmoplastic component of a mixed desmoplastic/non-desmoplastic melanoma. In 2004, Busam et al reported a clinicopathologic study of DM patients in which subdividing the tumours into “pure” and “mixed” subtypes correlated with clinical outcome. In that study, the authors classified melanomas as “pure” DM if “the overwhelming majority (≥90%) of invasive tumour was desmoplastic”, or “mixed” DM if “typical features of DM were mixed with densely cellular tumour foci without fibrosis and desmoplasia” and the DM areas involved <90% and >10% of the invasive melanoma. Similar findings have since been reported by others. Improved disease-specific survival is seen in patients with “pure” DM, when compared with patients with “mixed” DM and those with melanomas lacking a desmoplastic component. Furthermore, regional nodal metastasis (including that detected by sentinel lymph node biopsy) is less common in patients presenting with clinically localized pure DM compared with those who had mixed DM or conventional melanomas.

Note 21 - Associated melanocytic lesion (Non-core)

Although of no known prognostic value, the recognition of an associated benign melanocytic lesion is relevant to the pathogenesis of melanoma, and may be important for clinicopathological correlation and epidemiological, clinical and genetic studies. Documentation of associated benign melanocytic tumour is also of relevance where there may be residual melanocytic tumour in the re-excision specimen, and when knowledge of this may assist in the interpretation of the residual tumour overlying a scar as pseudomelanoma/recurrent naevus, rather than melanoma.

In some instances, it can be difficult or even impossible to determine whether part of the dermal component of a melanocytic tumour represents melanoma or an associated naevus. This is particularly the situation in melanoma composed of small, minimally atypical ‘naevoid’ cells, or in cases in which the dermal component of a melanoma ‘matures’ with depth. Careful assessment of cytological characteristics — including the presence of mitotic figures and the identification of a second discrete cell population — may assist in some cases.

Note 22 - Lymph node status (Core and Non-core)

If lymph nodes are NOT received, this element should not be reported.

The presence or absence of nodal metastasis is an important N category criterion in the AJCC staging system. Regional lymph nodes are the most common site of initial metastasis in patients with cutaneous melanoma. Among patients with regional lymph node metastasis, the majority have clinically occult disease that is detected by the technique of lymphatic mapping and sentinel lymph node biopsy. Patients without clinical or radiographic evidence of regional lymph node metastases but who have microscopically documented nodal metastases (usually detected by lymphatic mapping and sentinel node biopsy) are defined as "clinically occult" whereas nodal metastases detected by palpation or radiological imaging are defined as “clinically apparent”. Patients with "clinically occult" metastases are designated (as in the prior edition) as N1a, N2a, or N3a based...
on the number of tumour-involved nodes unless microsatellites, satellites, or in-transit metastases are present. Patients who present with clinical evidence of regional disease are assigned as N1b, N2b, or N3b based on the number of nodes involved. If at least one node was clinically evident, and there are additional involved nodes detected only on microscopic examination, the total number of involved nodes (e.g., both those clinically apparent and those detected only on microscopic examination of a complete lymphadenectomy specimen) should be recorded for N categorization. If a node is “clinically apparent” it is not, strictly speaking, a sentinel node.

If a lymph node is received but it is not specifically stated that it is a sentinel node then it should be reported as a non-sentinel node. Any additional relevant microscopic comments should be recorded.

Extranodal extension (ENE) is an adverse prognostic factor in melanoma patients. It is defined as the presence of a nodal metastasis extending through the lymph node capsule and into adjacent tissue, which may be apparent macroscopically but must be confirmed microscopically. Matted nodes (defined as two or more nodes adherent to one another through involvement by metastatic disease, identified at the time the specimen is examined macroscopically in the pathology laboratory) often suggest the presence of ENE but the latter must be confirmed microscopically.

Sentinel Lymph Nodes

Tumour-harbouring status of the sentinel lymph nodes (SLN) is the strongest predictor of outcome for clinically localized primary cutaneous melanoma patients. There are a number of potential pitfalls in the microscopic examination of SLNs. The most common diagnostic problem is distinguishing nodal nevus cells from a melanoma metastasis. This can usually be resolved by careful assessment of the location, morphologic features, and immunohistochemical staining characteristics of the cells and, in some instances, comparing the cytology of the nodal melanocytes with the cells of the primary invasive melanoma. Nodal nevi are usually located in the fibrous capsule and trabeculae of lymph nodes (but may rarely occur within the nodal parenchyma) and consist of small cytologically bland cells that are devoid of mitotic activity and, on immunohistochemistry, show strong diffuse positivity for S-100 and Melan-A, minimal staining for HMB-45, and a low (<2%) Ki-67 proliferative index. In contrast, melanoma deposits in SLNs are typically located in the subcapsular sinus or parenchyma and often comprise large, cytologically atypical cells with variably prominent nucleoli, mitotic activity, HMB-45 positivity, and Ki-67 positivity (variable but usually >2%). Other cells that may be found within lymph nodes and that are positive for S-100 include interdigitating (antigen presenting dendritic) cells, nerves, and, occasionally, macrophages. These can usually be distinguished from melanoma cells on the basis of their location, size, shape, nuclear and cytoplasmic characteristics, distribution within the node, and immunohistochemical profile. Positive melan-A/MART-1 staining of small numbers of cells in the intraparenchymal portion of lymph nodes from patients without a history of melanoma has been reported, and in our view caution should be exercised to not overinterpret isolated Melan-A/MART-1-positive (or HMB-45-positive) cells in SLNs as melanoma in the absence of other corroborative evidence (such as cytologic atypia, mitotic activity, or immunohistochemical positivity for HMB-45 and an increased high Ki-67/MIB-1 index). In our experience, the occurrence of such cells has become a more frequent diagnostic problem in recent years, presumably reflecting the utilization of more sensitive antibodies and immunohistochemical techniques. These cells could represent nevus cells, macrophages passively carrying melanoma-associated antigens, or some other cell type carrying antigens that cross-react with Melan-A/MART-1. Similarly, weak positive staining for HMB-45 is sometimes observed in pigment-laden macrophages and nevus cells. For a node to be interpreted as positive for melanoma, the immuno-positive cells in question should be morphologically consistent with being melanoma cells.

Histologic parameters of melanoma deposits in SLNs have been shown to be predictive of the presence or absence of tumour in non-SLNs and clinical outcome. If there are only a small number of metastatic melanoma cells in the subcapsular sinus of the SLN, the patient’s prognosis is very good and the chance of finding additional metastases in a completion lymph node dissection specimen is very small. However, if there
are multiple large deposits of melanoma cells that extend deeply into the central part of an SLN, the prognosis is much worse, and the chance of finding additional metastases in non-SLNs in a completion lymph node dissection specimen is much higher. SLN parameters predictive of non-SLN status and survival include the size of metastases, tumour penetrative depth (also known as maximal subcapsular depth and centripetal thickness and defined as the maximum distance of melanoma cells from the nearest inner margin of the lymph node capsule), the location of tumour deposits in the SLN, the percentage cross-sectional area of the SLN that is involved, and the presence of extracapsular spread. However, the power of individual features of melanoma metastases in SLNs to predict tumour in non-SLNs, as well as survival, reported in some studies has not been reported by others. The determination of some of these parameters may not always be reliable, because tumour deposits are often irregularly shaped, the limits of tumour deposits can be difficult to discern, and tumour burden is to some degree dependent on sectioning protocols, as more extensive sectioning may reveal additional tumour deposits or demonstrate a greater dimension of deposit(s) in the deeper sections. 119

It is recommended that guidelines provided for the measurement of the maximum dimension of the largest sentinel node metastasis in the AJCC Melanoma Staging System be used. The single largest maximum dimension (measured in millimetres to the nearest 0.1 mm using an ocular micrometre) of the largest discrete metastatic melanoma deposit in sentinel nodes should be measured and recorded. To be considered a discrete deposit, the tumour cells must be in direct continuity with adjacent tumour cells. In some instances, multiple small tumour aggregates may be disbursed within a lymph node and separated by lymphoid cells. In this circumstance, the size of the largest discrete single deposit (not the nodal area over which the multiple deposits are contained) should be recorded. The measurement may be made either on H&E-stained sections or on sections stained immunohistochemically. 120

Note 23 - Melanoma subtype (Non-core)

The common subtypes listed (superficial spreading melanoma, nodular melanoma, and lentigo maligna melanoma), have little prognostic significance independent of tumour thickness, 2,121-124 and their use is principally for clinicopathological correlation. Nevertheless, the traditional (“Clark-McGovern”) melanoma histogenetic classification highlights the myriad clinical and histological guises of melanoma, which if not recognized by clinicians and pathologists will inevitably lead to a delay in diagnosis and a concomitant adverse clinical outcome. 125 The traditional classification has been criticised because the criteria upon which it is based include clinical features (such as the site of the melanoma) and non-tumourous histopathological features (such as the character of the associated epidermis and the degree of solar elastosis) and also because of overlap in defining features. Nevertheless, there are instances where the melanoma subtype may influence prognosis and clinical management. For example, desmoplastic melanoma is less frequently associated with sentinel node positivity and some patients with desmoplastic melanoma may be managed with post operative radiotherapy. Similarly, melanoma in situ of lentigo maligna subtype in some patients may be better managed with staged surgical or alternative therapy considerations.

Based upon epidemiological and molecular evidence Bastian proposed a multidimensional classification for melanoma based on the role of ultraviolet radiation, the cell of origin and characteristic recurrent genetic alterations. 126 Building upon this proposal, in the latest addition of the World Health Organization (WHO) Classification of Skin Tumours, nine pathways for melanoma development are described. 127 Melanomas occurring predominantly in sun exposed skin include 1. Low cumulative sun damage (CSD) melanoma/superficial spreading melanoma, 2. High CSD melanoma/lentigo maligna melanoma and 3. Desmoplastic melanoma. Melanomas arising in sun shielded sites or without a known etiological association with UV exposure include 1. Malignant Spitz tumour (Spitz melanoma), 2. Acral melanoma, 3. Mucosal melanoma, 4. Melanoma arising in congenital naevus, 5. Melanoma arising in blue naevus and 6. Uveal melanoma. The commonest driver mutations identified in melanomas have included BRAF (40%), NRAS (15-20%), KIT (2%), and GNAQ/GNA11 (50% of uveal melanomas and almost universal melanomas in blue nevi, but
rare overall). BRAF mutations are most frequently identified in melanomas occurring in skin with a low degree of CSD whereas NRAS, NF1 and nonV600E BRAF mutations predominate in melanomas occurring in skin with a high degree of CSD. TERT promoter mutations and CDKN2A copy number loss and/or mutations are also implicated relatively early in the melanoma pathogenesis.

Note 24 - Ancillary studies (Non-core)

BRAF testing

Based on recent advances in our understanding of the molecular basis of melanoma and the role of the immune system in controlling the disease have led to multiple new therapeutic strategies that have radically transformed the care of melanoma patients, particularly those with advanced stage disease. These treatments were initially shown to be effective in patients with stage IV melanoma but more recently have demonstrated a 50% reduction in the rate of relapse for patients with stage III melanoma and are now being trialled in patients with earlier stage melanoma. Examples of these new effective drug therapies approaches are immunotherapy, using immune system checkpoint inhibitors against CTLA-4 and/or PD-1, and molecularly-targeted therapy using BRAF inhibitors alone (monotherapy) or in combination with MEK inhibitors for the approximately 40-50% of patients with metastatic melanoma whose melanoma harbors a BRAF V600 mutation.

BRAF mutations in melanoma are predominantly V600E (73-90%) and V600K (5-20%), but occasionally are other genotypes. There is an inverse relationship between BRAF mutation prevalence and age. Almost all patients <30 years and only 25% of patients ≥70 years had BRAF-mutant melanoma. Amongst BRAF-mutant melanoma, the frequency of non-V600E genotypes (including V600K) increase with increasing age. There are various molecular techniques for detecting BRAF and other somatic gene mutations within melanoma and these techniques are associated with varying sensitivity and specificity. With all techniques, careful macrodissection by pathologists to enrich for tumour cells is usually an important pre-analytical step to ensure optimal results of testing. The presence of BRAFV600E mutation can be detected by immunohistochemistry, but there are as yet no validated antibodies available for the detection of BRAFV600K mutations, and hence alternative techniques are required.

Other ancillary testing

In selected circumstances, molecular ancillary studies can be helpful when evaluating melanocytic tumours. In difficult melanocytic tumours, in which accurate characterization of the tumour as benign or malignant is difficult based on routine histopathology, it may be useful to assess for the presence of chromosomal copy number aberrations.

Comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) can be used to detect chromosomal copy number aberrations in formalin-fixed, paraffin-embedded tissue. FISH can be utilized to directly visualize specific chromosomal copy number changes within individual tumour cells. While it has the limitation of being able to test for only a limited number of changes (compared to CGH, which tests for chromosomal aberrations in the entire genome), FISH is more easily applied in routine clinical practice and can be successfully performed on small tumour samples. CGH is generally only available in specialist centres, and is expensive and not applicable to small samples.

Gene expression has also been used to assist in the classification of borderline melanocytic tumours and a number of commercially available tests have been developed utilising this technique. However, these tests need further validation before they can be recommended for routine (i.e. beyond adjunct) use in the clinical setting.

With recent rapid advances in molecular techniques, it is likely that massively parallel next generation sequencing will become widely available in coming years. This will provide an opportunity to perform more
comprehensive molecular evaluation of a tumour from data generated in a single assay including mutation analysis, copy number changes, structural rearrangements and mutation burden. Although challenges remain in performing detailed analysis in a timely fashion within the constraints of a diagnostic setting, this will provide an unprecedented opportunity to incorporate molecular data into routine pathological evaluation and provide new insights into diagnosis, and prognostic and predictive biomarkers as well as tumour classification.

While some studies have shown correlation between mutation burden, gene signatures and/or PDL1 expression and response to immunotherapies, at present there are no biomarkers with sufficiently high sensitivity or specificity to be of clinical utility in routine practice.

Note 25 - Pathological staging (TNM 8th ed.) - Primary tumour (T) (Core)

In the 8th edition of the AJCC/UICC melanoma staging system, tumour thickness and ulceration continue to define T1, T2, T3 and T4 categories.

If a partial biopsy of a melanoma has been performed, the maximum tumour thickness from the thicker of either the biopsy or definitive excision and presence of (nontraumatic) ulceration in either specimen should be recorded for pathological T categorization purposes.

The reference document: TNM Supplement: A commentary on uniform use, 4th Edition (C Wittekind editor) may be of assistance when staging.

Note 26 - Pathological staging (TNM 8th ed.) - Regional lymph nodes (N) (Core)

“Thickness should be measured by using an ocular micrometer calibrated to the magnification of the microscope used for the measurement. In accordance with consensus recommendations, thickness measurements should be recorded to the nearest 0.1 mm, not the nearest 0.01 mm, because of impracticality and imprecision of measurement, particularly for tumours >1 mm thick. Tumours ≤1 mm thick may be measured to the nearest 0.01 mm if practical, but the measurement should be rounded up or down to be recorded as a single digit after the decimal (i.e., to the nearest 0.1 mm). The convention for rounding decimal values is to round down those ending in 1 to 4 and to round up for those ending in 5 to 9. For example, a melanoma measuring 0.75 mm in thickness would be recorded as 0.8 mm in thickness. Tumour measuring 0.95 mm and one measuring 1.04 mm both would be rounded to 1.0 mm (i.e., T1b).”

“Patients without clinical or radiographic evidence of regional lymph node metastases but who have microscopically documented nodal metastases (usually detected by lymphatic mapping and SLN biopsy) are defined as having “clinically occult” (previously termed microscopic in the 7th Edition) disease, and represent the vast majority of patients who are diagnosed with regional metastasis at presentation. Patients with clinically occult metastases are designated as N1a, N2a, or N3a based on the number of tumour-involved nodes, unless microsatellites, satellites, or in-transit metastases are present. If they are, the patient is assigned N1c, N2c, or N3c according to the number of involved nodes. Patients who may undergo systemic treatment after needle biopsy of a clinically detected node or an SLN biopsy only are clinically staged as cN1 or greater. There is growing evidence that microscopic tumour burden in the sentinel node is prognostically significant. Though this histopathologic characteristic was not proposed for the N category in the 8th Edition, it was recommended to be recorded; documentation of sentinel node burden is an important factor that will be included in and likely guide future prognostic models and the development of clinical tools for
patients with regional disease. Sentinel node tumour burden is discussed in detail in Additional Factors Recommended for Clinical Care.18

"In melanoma, there is no unequivocal evidence that there is a lower threshold of microscopically identifiable sentinel node tumour burden that should be used to define node-positive disease for staging purposes. A sentinel lymph node in which any metastatic tumour cells are identified, irrespective of how few the cells are or whether they are identified on hematoxylin and eosin (H&E) or immunostained sections, should be designated as a tumour-positive lymph node. This is unchanged from the 7th Edition. If melanoma cells are found within a lymphatic channel within or immediately adjacent to a lymph node, that node is regarded as tumour-involved for staging purposes.18"

To determine the number of nodes involved for pathological staging, the number of tumour-positive sentinel nodes should be added to the number of tumour-positive nonsentinel nodes, if any, identified after completion lymph node dissection (if performed). Not all patients with a positive SLN biopsy undergo completion lymph node dissection (CLND). If a patient undergoes SLN biopsy that is positive for metastasis, and does not undergo CLND, the designation of pN1 (sn) is appropriate and may be used. In the context of patients who undergo completion lymphadenectomy after SLN biopsy, the pN1a, pN1b, or pN1c subcategory (without the suffix "(sn)") implying that a CLND has been performed and the (sn) description is not used.18

"Patients who present with clinical evidence of regional disease are assigned as N1b, N2b, or N3b based on the number of nodes involved. If at least one node was clinically evident and there are additional involved nodes detected only on microscopic examination, the total number of involved nodes (e.g., both those clinically apparent and those detected only on microscopic examination of a complete lymphadenectomy specimen) should be recorded for N categorization. As noted for patients with clinically occult disease, those with clinically evident disease who also have microsatellites, satellites, or in-transit metastases at diagnosis are assigned as N1c, N2c, or N3c, based on the number of nodes involved by metastasis.18"

"Patients with clinically occult regional disease have been shown to have better survival than patients with clinically evident disease.40,158,159 Overall, there is marked heterogeneity in prognosis among patients with Stage III regional node disease by N-category designation or by T category among patients with N+ disease. Although N category alone predicts outcome, more accurate prognostic estimation is obtained by also incorporating features of the primary tumour.18"

M category criteria continue to be determined both by site of distant metastases and serum lactate dehydrogenase (LDH), but patients with regionally isolated metastasis from an unknown primary site should be categorised as Stage III rather than Stage IV, because their prognosis corresponds to that of Stage III disease from a known primary site.
References

Scolyer RA and Thompson JF (2013). Mitotic rate in melanoma should be recorded as the number of mitoses per mm2 (not per high power field): surgeons tell your pathologists! . *Am J Surg Pathol* 206(1):142-143.

Scolyer RA and Thompson JF (2005). Desmoplastic melanoma: a heterogeneous entity in which subclassification as “pure” or “mixed” may have important prognostic significance. *Ann Surg Oncol.* 12:197-199.

